Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij1lem11
Next ⟩
ackbij1lem12
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij1lem11
Description:
Lemma for
ackbij1
.
(Contributed by
Stefan O'Rear
, 18-Nov-2014)
Ref
Expression
Hypothesis
ackbij.f
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⁡
⋃
y
∈
x
y
×
𝒫
y
Assertion
ackbij1lem11
⊢
A
∈
𝒫
ω
∩
Fin
∧
B
⊆
A
→
B
∈
𝒫
ω
∩
Fin
Proof
Step
Hyp
Ref
Expression
1
ackbij.f
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⁡
⋃
y
∈
x
y
×
𝒫
y
2
ssexg
⊢
B
⊆
A
∧
A
∈
𝒫
ω
∩
Fin
→
B
∈
V
3
elinel1
⊢
A
∈
𝒫
ω
∩
Fin
→
A
∈
𝒫
ω
4
3
elpwid
⊢
A
∈
𝒫
ω
∩
Fin
→
A
⊆
ω
5
sstr
⊢
B
⊆
A
∧
A
⊆
ω
→
B
⊆
ω
6
4
5
sylan2
⊢
B
⊆
A
∧
A
∈
𝒫
ω
∩
Fin
→
B
⊆
ω
7
2
6
elpwd
⊢
B
⊆
A
∧
A
∈
𝒫
ω
∩
Fin
→
B
∈
𝒫
ω
8
7
ancoms
⊢
A
∈
𝒫
ω
∩
Fin
∧
B
⊆
A
→
B
∈
𝒫
ω
9
elinel2
⊢
A
∈
𝒫
ω
∩
Fin
→
A
∈
Fin
10
ssfi
⊢
A
∈
Fin
∧
B
⊆
A
→
B
∈
Fin
11
9
10
sylan
⊢
A
∈
𝒫
ω
∩
Fin
∧
B
⊆
A
→
B
∈
Fin
12
8
11
elind
⊢
A
∈
𝒫
ω
∩
Fin
∧
B
⊆
A
→
B
∈
𝒫
ω
∩
Fin