Metamath Proof Explorer


Theorem ackbij1lem13

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f F = x 𝒫 ω Fin card y x y × 𝒫 y
Assertion ackbij1lem13 F =

Proof

Step Hyp Ref Expression
1 ackbij.f F = x 𝒫 ω Fin card y x y × 𝒫 y
2 1 ackbij1lem10 F : 𝒫 ω Fin ω
3 peano1 ω
4 2 3 f0cli F ω
5 nna0 F ω F + 𝑜 = F
6 4 5 ax-mp F + 𝑜 = F
7 un0 =
8 7 fveq2i F = F
9 ackbij1lem3 ω 𝒫 ω Fin
10 3 9 ax-mp 𝒫 ω Fin
11 in0 =
12 1 ackbij1lem9 𝒫 ω Fin 𝒫 ω Fin = F = F + 𝑜 F
13 10 10 11 12 mp3an F = F + 𝑜 F
14 6 8 13 3eqtr2ri F + 𝑜 F = F + 𝑜
15 nnacan F ω F ω ω F + 𝑜 F = F + 𝑜 F =
16 4 4 3 15 mp3an F + 𝑜 F = F + 𝑜 F =
17 14 16 mpbi F =