Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij1lem13
Next ⟩
ackbij1lem14
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij1lem13
Description:
Lemma for
ackbij1
.
(Contributed by
Stefan O'Rear
, 18-Nov-2014)
Ref
Expression
Hypothesis
ackbij.f
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⁡
⋃
y
∈
x
y
×
𝒫
y
Assertion
ackbij1lem13
⊢
F
⁡
∅
=
∅
Proof
Step
Hyp
Ref
Expression
1
ackbij.f
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⁡
⋃
y
∈
x
y
×
𝒫
y
2
1
ackbij1lem10
⊢
F
:
𝒫
ω
∩
Fin
⟶
ω
3
peano1
⊢
∅
∈
ω
4
2
3
f0cli
⊢
F
⁡
∅
∈
ω
5
nna0
⊢
F
⁡
∅
∈
ω
→
F
⁡
∅
+
𝑜
∅
=
F
⁡
∅
6
4
5
ax-mp
⊢
F
⁡
∅
+
𝑜
∅
=
F
⁡
∅
7
un0
⊢
∅
∪
∅
=
∅
8
7
fveq2i
⊢
F
⁡
∅
∪
∅
=
F
⁡
∅
9
ackbij1lem3
⊢
∅
∈
ω
→
∅
∈
𝒫
ω
∩
Fin
10
3
9
ax-mp
⊢
∅
∈
𝒫
ω
∩
Fin
11
in0
⊢
∅
∩
∅
=
∅
12
1
ackbij1lem9
⊢
∅
∈
𝒫
ω
∩
Fin
∧
∅
∈
𝒫
ω
∩
Fin
∧
∅
∩
∅
=
∅
→
F
⁡
∅
∪
∅
=
F
⁡
∅
+
𝑜
F
⁡
∅
13
10
10
11
12
mp3an
⊢
F
⁡
∅
∪
∅
=
F
⁡
∅
+
𝑜
F
⁡
∅
14
6
8
13
3eqtr2ri
⊢
F
⁡
∅
+
𝑜
F
⁡
∅
=
F
⁡
∅
+
𝑜
∅
15
nnacan
⊢
F
⁡
∅
∈
ω
∧
F
⁡
∅
∈
ω
∧
∅
∈
ω
→
F
⁡
∅
+
𝑜
F
⁡
∅
=
F
⁡
∅
+
𝑜
∅
↔
F
⁡
∅
=
∅
16
4
4
3
15
mp3an
⊢
F
⁡
∅
+
𝑜
F
⁡
∅
=
F
⁡
∅
+
𝑜
∅
↔
F
⁡
∅
=
∅
17
14
16
mpbi
⊢
F
⁡
∅
=
∅