| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|
| 2 |
1
|
ackbij1lem8 |
|
| 3 |
|
pweq |
|
| 4 |
3
|
fveq2d |
|
| 5 |
|
fveq2 |
|
| 6 |
|
suceq |
|
| 7 |
5 6
|
syl |
|
| 8 |
4 7
|
eqeq12d |
|
| 9 |
|
pweq |
|
| 10 |
9
|
fveq2d |
|
| 11 |
|
fveq2 |
|
| 12 |
|
suceq |
|
| 13 |
11 12
|
syl |
|
| 14 |
10 13
|
eqeq12d |
|
| 15 |
|
pweq |
|
| 16 |
15
|
fveq2d |
|
| 17 |
|
fveq2 |
|
| 18 |
|
suceq |
|
| 19 |
17 18
|
syl |
|
| 20 |
16 19
|
eqeq12d |
|
| 21 |
|
pweq |
|
| 22 |
21
|
fveq2d |
|
| 23 |
|
fveq2 |
|
| 24 |
|
suceq |
|
| 25 |
23 24
|
syl |
|
| 26 |
22 25
|
eqeq12d |
|
| 27 |
|
df-1o |
|
| 28 |
|
pw0 |
|
| 29 |
28
|
fveq2i |
|
| 30 |
|
0ex |
|
| 31 |
|
cardsn |
|
| 32 |
30 31
|
ax-mp |
|
| 33 |
29 32
|
eqtri |
|
| 34 |
1
|
ackbij1lem13 |
|
| 35 |
|
suceq |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
27 33 36
|
3eqtr4i |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
adantl |
|
| 40 |
|
ackbij1lem5 |
|
| 41 |
40
|
adantr |
|
| 42 |
|
df-suc |
|
| 43 |
42
|
equncomi |
|
| 44 |
43
|
fveq2i |
|
| 45 |
|
ackbij1lem4 |
|
| 46 |
45
|
adantr |
|
| 47 |
|
ackbij1lem3 |
|
| 48 |
47
|
adantr |
|
| 49 |
|
incom |
|
| 50 |
|
nnord |
|
| 51 |
|
orddisj |
|
| 52 |
50 51
|
syl |
|
| 53 |
49 52
|
eqtrid |
|
| 54 |
53
|
adantr |
|
| 55 |
1
|
ackbij1lem9 |
|
| 56 |
46 48 54 55
|
syl3anc |
|
| 57 |
1
|
ackbij1lem8 |
|
| 58 |
57
|
adantr |
|
| 59 |
58
|
oveq1d |
|
| 60 |
56 59
|
eqtrd |
|
| 61 |
44 60
|
eqtrid |
|
| 62 |
|
suceq |
|
| 63 |
61 62
|
syl |
|
| 64 |
|
nnfi |
|
| 65 |
|
pwfi |
|
| 66 |
64 65
|
sylib |
|
| 67 |
66
|
adantr |
|
| 68 |
|
ficardom |
|
| 69 |
67 68
|
syl |
|
| 70 |
1
|
ackbij1lem10 |
|
| 71 |
70
|
ffvelcdmi |
|
| 72 |
48 71
|
syl |
|
| 73 |
|
nnasuc |
|
| 74 |
69 72 73
|
syl2anc |
|
| 75 |
63 74
|
eqtr4d |
|
| 76 |
39 41 75
|
3eqtr4d |
|
| 77 |
76
|
ex |
|
| 78 |
8 14 20 26 37 77
|
finds |
|
| 79 |
2 78
|
eqtrd |
|