| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|
| 2 |
|
inss1 |
|
| 3 |
2
|
sseli |
|
| 4 |
3
|
elpwid |
|
| 5 |
4
|
adantr |
|
| 6 |
2
|
sseli |
|
| 7 |
6
|
elpwid |
|
| 8 |
7
|
adantl |
|
| 9 |
5 8
|
unssd |
|
| 10 |
|
inss2 |
|
| 11 |
10
|
sseli |
|
| 12 |
10
|
sseli |
|
| 13 |
|
unfi |
|
| 14 |
11 12 13
|
syl2an |
|
| 15 |
|
nnunifi |
|
| 16 |
9 14 15
|
syl2anc |
|
| 17 |
|
peano2 |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
ineq2 |
|
| 20 |
19
|
fveq2d |
|
| 21 |
|
ineq2 |
|
| 22 |
21
|
fveq2d |
|
| 23 |
20 22
|
eqeq12d |
|
| 24 |
19 21
|
eqeq12d |
|
| 25 |
23 24
|
imbi12d |
|
| 26 |
25
|
imbi2d |
|
| 27 |
|
ineq2 |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
ineq2 |
|
| 30 |
29
|
fveq2d |
|
| 31 |
28 30
|
eqeq12d |
|
| 32 |
27 29
|
eqeq12d |
|
| 33 |
31 32
|
imbi12d |
|
| 34 |
33
|
imbi2d |
|
| 35 |
|
ineq2 |
|
| 36 |
35
|
fveq2d |
|
| 37 |
|
ineq2 |
|
| 38 |
37
|
fveq2d |
|
| 39 |
36 38
|
eqeq12d |
|
| 40 |
35 37
|
eqeq12d |
|
| 41 |
39 40
|
imbi12d |
|
| 42 |
41
|
imbi2d |
|
| 43 |
|
ineq2 |
|
| 44 |
43
|
fveq2d |
|
| 45 |
|
ineq2 |
|
| 46 |
45
|
fveq2d |
|
| 47 |
44 46
|
eqeq12d |
|
| 48 |
43 45
|
eqeq12d |
|
| 49 |
47 48
|
imbi12d |
|
| 50 |
49
|
imbi2d |
|
| 51 |
|
in0 |
|
| 52 |
|
in0 |
|
| 53 |
51 52
|
eqtr4i |
|
| 54 |
53
|
2a1i |
|
| 55 |
|
simp13 |
|
| 56 |
|
3simpa |
|
| 57 |
|
ackbij1lem2 |
|
| 58 |
57
|
fveq2d |
|
| 59 |
58
|
3ad2ant2 |
|
| 60 |
|
ackbij1lem4 |
|
| 61 |
60
|
adantr |
|
| 62 |
|
simprl |
|
| 63 |
|
inss1 |
|
| 64 |
1
|
ackbij1lem11 |
|
| 65 |
62 63 64
|
sylancl |
|
| 66 |
|
incom |
|
| 67 |
|
inss2 |
|
| 68 |
|
nnord |
|
| 69 |
|
orddisj |
|
| 70 |
68 69
|
syl |
|
| 71 |
70
|
adantr |
|
| 72 |
|
ssdisj |
|
| 73 |
67 71 72
|
sylancr |
|
| 74 |
66 73
|
eqtrid |
|
| 75 |
1
|
ackbij1lem9 |
|
| 76 |
61 65 74 75
|
syl3anc |
|
| 77 |
76
|
3ad2ant1 |
|
| 78 |
59 77
|
eqtrd |
|
| 79 |
56 78
|
syl3an1 |
|
| 80 |
|
ackbij1lem2 |
|
| 81 |
80
|
fveq2d |
|
| 82 |
81
|
3ad2ant3 |
|
| 83 |
|
simprr |
|
| 84 |
|
inss1 |
|
| 85 |
1
|
ackbij1lem11 |
|
| 86 |
83 84 85
|
sylancl |
|
| 87 |
|
incom |
|
| 88 |
|
inss2 |
|
| 89 |
|
ssdisj |
|
| 90 |
88 71 89
|
sylancr |
|
| 91 |
87 90
|
eqtrid |
|
| 92 |
1
|
ackbij1lem9 |
|
| 93 |
61 86 91 92
|
syl3anc |
|
| 94 |
93
|
3ad2ant1 |
|
| 95 |
82 94
|
eqtrd |
|
| 96 |
56 95
|
syl3an1 |
|
| 97 |
55 79 96
|
3eqtr3d |
|
| 98 |
1
|
ackbij1lem10 |
|
| 99 |
98
|
ffvelcdmi |
|
| 100 |
61 99
|
syl |
|
| 101 |
98
|
ffvelcdmi |
|
| 102 |
65 101
|
syl |
|
| 103 |
98
|
ffvelcdmi |
|
| 104 |
86 103
|
syl |
|
| 105 |
|
nnacan |
|
| 106 |
100 102 104 105
|
syl3anc |
|
| 107 |
106
|
3adant3 |
|
| 108 |
107
|
3ad2ant1 |
|
| 109 |
97 108
|
mpbid |
|
| 110 |
|
uneq2 |
|
| 111 |
110
|
adantl |
|
| 112 |
57
|
ad2antrr |
|
| 113 |
80
|
ad2antlr |
|
| 114 |
111 112 113
|
3eqtr4d |
|
| 115 |
114
|
ex |
|
| 116 |
115
|
3adant1 |
|
| 117 |
109 116
|
embantd |
|
| 118 |
117
|
3exp |
|
| 119 |
|
simp13 |
|
| 120 |
119
|
eqcomd |
|
| 121 |
|
simp12r |
|
| 122 |
|
simp12l |
|
| 123 |
|
simp11 |
|
| 124 |
|
simp3 |
|
| 125 |
|
simp2 |
|
| 126 |
1
|
ackbij1lem15 |
|
| 127 |
121 122 123 124 125 126
|
syl23anc |
|
| 128 |
120 127
|
pm2.21dd |
|
| 129 |
128
|
3exp |
|
| 130 |
118 129
|
pm2.61d |
|
| 131 |
|
simp13 |
|
| 132 |
|
simp12l |
|
| 133 |
|
simp12r |
|
| 134 |
|
simp11 |
|
| 135 |
|
simp2 |
|
| 136 |
|
simp3 |
|
| 137 |
1
|
ackbij1lem15 |
|
| 138 |
132 133 134 135 136 137
|
syl23anc |
|
| 139 |
131 138
|
pm2.21dd |
|
| 140 |
139
|
3exp |
|
| 141 |
|
simp13 |
|
| 142 |
|
ackbij1lem1 |
|
| 143 |
142
|
adantr |
|
| 144 |
143
|
fveq2d |
|
| 145 |
|
ackbij1lem1 |
|
| 146 |
145
|
adantl |
|
| 147 |
146
|
fveq2d |
|
| 148 |
144 147
|
eqeq12d |
|
| 149 |
148
|
biimpd |
|
| 150 |
149
|
3adant1 |
|
| 151 |
141 150
|
mpd |
|
| 152 |
143 146
|
eqeq12d |
|
| 153 |
152
|
biimprd |
|
| 154 |
153
|
3adant1 |
|
| 155 |
151 154
|
embantd |
|
| 156 |
155
|
3exp |
|
| 157 |
140 156
|
pm2.61d |
|
| 158 |
130 157
|
pm2.61d |
|
| 159 |
158
|
3exp |
|
| 160 |
159
|
com34 |
|
| 161 |
160
|
a2d |
|
| 162 |
26 34 42 50 54 161
|
finds |
|
| 163 |
18 162
|
mpcom |
|
| 164 |
|
omsson |
|
| 165 |
9 164
|
sstrdi |
|
| 166 |
|
onsucuni |
|
| 167 |
165 166
|
syl |
|
| 168 |
167
|
unssad |
|
| 169 |
|
dfss2 |
|
| 170 |
168 169
|
sylib |
|
| 171 |
170
|
fveq2d |
|
| 172 |
167
|
unssbd |
|
| 173 |
|
dfss2 |
|
| 174 |
172 173
|
sylib |
|
| 175 |
174
|
fveq2d |
|
| 176 |
171 175
|
eqeq12d |
|
| 177 |
170 174
|
eqeq12d |
|
| 178 |
163 176 177
|
3imtr3d |
|