Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
|
2 |
|
inss1 |
|
3 |
2
|
sseli |
|
4 |
3
|
elpwid |
|
5 |
4
|
adantr |
|
6 |
2
|
sseli |
|
7 |
6
|
elpwid |
|
8 |
7
|
adantl |
|
9 |
5 8
|
unssd |
|
10 |
|
inss2 |
|
11 |
10
|
sseli |
|
12 |
10
|
sseli |
|
13 |
|
unfi |
|
14 |
11 12 13
|
syl2an |
|
15 |
|
nnunifi |
|
16 |
9 14 15
|
syl2anc |
|
17 |
|
peano2 |
|
18 |
16 17
|
syl |
|
19 |
|
ineq2 |
|
20 |
19
|
fveq2d |
|
21 |
|
ineq2 |
|
22 |
21
|
fveq2d |
|
23 |
20 22
|
eqeq12d |
|
24 |
19 21
|
eqeq12d |
|
25 |
23 24
|
imbi12d |
|
26 |
25
|
imbi2d |
|
27 |
|
ineq2 |
|
28 |
27
|
fveq2d |
|
29 |
|
ineq2 |
|
30 |
29
|
fveq2d |
|
31 |
28 30
|
eqeq12d |
|
32 |
27 29
|
eqeq12d |
|
33 |
31 32
|
imbi12d |
|
34 |
33
|
imbi2d |
|
35 |
|
ineq2 |
|
36 |
35
|
fveq2d |
|
37 |
|
ineq2 |
|
38 |
37
|
fveq2d |
|
39 |
36 38
|
eqeq12d |
|
40 |
35 37
|
eqeq12d |
|
41 |
39 40
|
imbi12d |
|
42 |
41
|
imbi2d |
|
43 |
|
ineq2 |
|
44 |
43
|
fveq2d |
|
45 |
|
ineq2 |
|
46 |
45
|
fveq2d |
|
47 |
44 46
|
eqeq12d |
|
48 |
43 45
|
eqeq12d |
|
49 |
47 48
|
imbi12d |
|
50 |
49
|
imbi2d |
|
51 |
|
in0 |
|
52 |
|
in0 |
|
53 |
51 52
|
eqtr4i |
|
54 |
53
|
2a1i |
|
55 |
|
simp13 |
|
56 |
|
3simpa |
|
57 |
|
ackbij1lem2 |
|
58 |
57
|
fveq2d |
|
59 |
58
|
3ad2ant2 |
|
60 |
|
ackbij1lem4 |
|
61 |
60
|
adantr |
|
62 |
|
simprl |
|
63 |
|
inss1 |
|
64 |
1
|
ackbij1lem11 |
|
65 |
62 63 64
|
sylancl |
|
66 |
|
incom |
|
67 |
|
inss2 |
|
68 |
|
nnord |
|
69 |
|
orddisj |
|
70 |
68 69
|
syl |
|
71 |
70
|
adantr |
|
72 |
|
ssdisj |
|
73 |
67 71 72
|
sylancr |
|
74 |
66 73
|
eqtrid |
|
75 |
1
|
ackbij1lem9 |
|
76 |
61 65 74 75
|
syl3anc |
|
77 |
76
|
3ad2ant1 |
|
78 |
59 77
|
eqtrd |
|
79 |
56 78
|
syl3an1 |
|
80 |
|
ackbij1lem2 |
|
81 |
80
|
fveq2d |
|
82 |
81
|
3ad2ant3 |
|
83 |
|
simprr |
|
84 |
|
inss1 |
|
85 |
1
|
ackbij1lem11 |
|
86 |
83 84 85
|
sylancl |
|
87 |
|
incom |
|
88 |
|
inss2 |
|
89 |
|
ssdisj |
|
90 |
88 71 89
|
sylancr |
|
91 |
87 90
|
eqtrid |
|
92 |
1
|
ackbij1lem9 |
|
93 |
61 86 91 92
|
syl3anc |
|
94 |
93
|
3ad2ant1 |
|
95 |
82 94
|
eqtrd |
|
96 |
56 95
|
syl3an1 |
|
97 |
55 79 96
|
3eqtr3d |
|
98 |
1
|
ackbij1lem10 |
|
99 |
98
|
ffvelrni |
|
100 |
61 99
|
syl |
|
101 |
98
|
ffvelrni |
|
102 |
65 101
|
syl |
|
103 |
98
|
ffvelrni |
|
104 |
86 103
|
syl |
|
105 |
|
nnacan |
|
106 |
100 102 104 105
|
syl3anc |
|
107 |
106
|
3adant3 |
|
108 |
107
|
3ad2ant1 |
|
109 |
97 108
|
mpbid |
|
110 |
|
uneq2 |
|
111 |
110
|
adantl |
|
112 |
57
|
ad2antrr |
|
113 |
80
|
ad2antlr |
|
114 |
111 112 113
|
3eqtr4d |
|
115 |
114
|
ex |
|
116 |
115
|
3adant1 |
|
117 |
109 116
|
embantd |
|
118 |
117
|
3exp |
|
119 |
|
simp13 |
|
120 |
119
|
eqcomd |
|
121 |
|
simp12r |
|
122 |
|
simp12l |
|
123 |
|
simp11 |
|
124 |
|
simp3 |
|
125 |
|
simp2 |
|
126 |
1
|
ackbij1lem15 |
|
127 |
121 122 123 124 125 126
|
syl23anc |
|
128 |
120 127
|
pm2.21dd |
|
129 |
128
|
3exp |
|
130 |
118 129
|
pm2.61d |
|
131 |
|
simp13 |
|
132 |
|
simp12l |
|
133 |
|
simp12r |
|
134 |
|
simp11 |
|
135 |
|
simp2 |
|
136 |
|
simp3 |
|
137 |
1
|
ackbij1lem15 |
|
138 |
132 133 134 135 136 137
|
syl23anc |
|
139 |
131 138
|
pm2.21dd |
|
140 |
139
|
3exp |
|
141 |
|
simp13 |
|
142 |
|
ackbij1lem1 |
|
143 |
142
|
adantr |
|
144 |
143
|
fveq2d |
|
145 |
|
ackbij1lem1 |
|
146 |
145
|
adantl |
|
147 |
146
|
fveq2d |
|
148 |
144 147
|
eqeq12d |
|
149 |
148
|
biimpd |
|
150 |
149
|
3adant1 |
|
151 |
141 150
|
mpd |
|
152 |
143 146
|
eqeq12d |
|
153 |
152
|
biimprd |
|
154 |
153
|
3adant1 |
|
155 |
151 154
|
embantd |
|
156 |
155
|
3exp |
|
157 |
140 156
|
pm2.61d |
|
158 |
130 157
|
pm2.61d |
|
159 |
158
|
3exp |
|
160 |
159
|
com34 |
|
161 |
160
|
a2d |
|
162 |
26 34 42 50 54 161
|
finds |
|
163 |
18 162
|
mpcom |
|
164 |
|
omsson |
|
165 |
9 164
|
sstrdi |
|
166 |
|
onsucuni |
|
167 |
165 166
|
syl |
|
168 |
167
|
unssad |
|
169 |
|
df-ss |
|
170 |
168 169
|
sylib |
|
171 |
170
|
fveq2d |
|
172 |
167
|
unssbd |
|
173 |
|
df-ss |
|
174 |
172 173
|
sylib |
|
175 |
174
|
fveq2d |
|
176 |
171 175
|
eqeq12d |
|
177 |
170 174
|
eqeq12d |
|
178 |
163 176 177
|
3imtr3d |
|