Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij1lem17
Next ⟩
ackbij1lem18
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij1lem17
Description:
Lemma for
ackbij1
.
(Contributed by
Stefan O'Rear
, 18-Nov-2014)
Ref
Expression
Hypothesis
ackbij.f
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⁡
⋃
y
∈
x
y
×
𝒫
y
Assertion
ackbij1lem17
⊢
F
:
𝒫
ω
∩
Fin
⟶
1-1
ω
Proof
Step
Hyp
Ref
Expression
1
ackbij.f
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⁡
⋃
y
∈
x
y
×
𝒫
y
2
1
ackbij1lem10
⊢
F
:
𝒫
ω
∩
Fin
⟶
ω
3
1
ackbij1lem16
⊢
a
∈
𝒫
ω
∩
Fin
∧
b
∈
𝒫
ω
∩
Fin
→
F
⁡
a
=
F
⁡
b
→
a
=
b
4
3
rgen2
⊢
∀
a
∈
𝒫
ω
∩
Fin
∀
b
∈
𝒫
ω
∩
Fin
F
⁡
a
=
F
⁡
b
→
a
=
b
5
dff13
⊢
F
:
𝒫
ω
∩
Fin
⟶
1-1
ω
↔
F
:
𝒫
ω
∩
Fin
⟶
ω
∧
∀
a
∈
𝒫
ω
∩
Fin
∀
b
∈
𝒫
ω
∩
Fin
F
⁡
a
=
F
⁡
b
→
a
=
b
6
2
4
5
mpbir2an
⊢
F
:
𝒫
ω
∩
Fin
⟶
1-1
ω