Metamath Proof Explorer


Theorem ackbij1lem2

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion ackbij1lem2 A B B suc A = A B A

Proof

Step Hyp Ref Expression
1 df-suc suc A = A A
2 1 ineq2i B suc A = B A A
3 indi B A A = B A B A
4 uncom B A B A = B A B A
5 2 3 4 3eqtri B suc A = B A B A
6 snssi A B A B
7 sseqin2 A B B A = A
8 6 7 sylib A B B A = A
9 8 uneq1d A B B A B A = A B A
10 5 9 eqtrid A B B suc A = A B A