Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij1lem2
Next ⟩
ackbij1lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij1lem2
Description:
Lemma for
ackbij2
.
(Contributed by
Stefan O'Rear
, 18-Nov-2014)
Ref
Expression
Assertion
ackbij1lem2
⊢
A
∈
B
→
B
∩
suc
⁡
A
=
A
∪
B
∩
A
Proof
Step
Hyp
Ref
Expression
1
df-suc
⊢
suc
⁡
A
=
A
∪
A
2
1
ineq2i
⊢
B
∩
suc
⁡
A
=
B
∩
A
∪
A
3
indi
⊢
B
∩
A
∪
A
=
B
∩
A
∪
B
∩
A
4
uncom
⊢
B
∩
A
∪
B
∩
A
=
B
∩
A
∪
B
∩
A
5
2
3
4
3eqtri
⊢
B
∩
suc
⁡
A
=
B
∩
A
∪
B
∩
A
6
snssi
⊢
A
∈
B
→
A
⊆
B
7
sseqin2
⊢
A
⊆
B
↔
B
∩
A
=
A
8
6
7
sylib
⊢
A
∈
B
→
B
∩
A
=
A
9
8
uneq1d
⊢
A
∈
B
→
B
∩
A
∪
B
∩
A
=
A
∪
B
∩
A
10
5
9
eqtrid
⊢
A
∈
B
→
B
∩
suc
⁡
A
=
A
∪
B
∩
A