Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij1lem3
Next ⟩
ackbij1lem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij1lem3
Description:
Lemma for
ackbij2
.
(Contributed by
Stefan O'Rear
, 18-Nov-2014)
Ref
Expression
Assertion
ackbij1lem3
⊢
A
∈
ω
→
A
∈
𝒫
ω
∩
Fin
Proof
Step
Hyp
Ref
Expression
1
ordom
⊢
Ord
⁡
ω
2
ordelss
⊢
Ord
⁡
ω
∧
A
∈
ω
→
A
⊆
ω
3
1
2
mpan
⊢
A
∈
ω
→
A
⊆
ω
4
elpwg
⊢
A
∈
ω
→
A
∈
𝒫
ω
↔
A
⊆
ω
5
3
4
mpbird
⊢
A
∈
ω
→
A
∈
𝒫
ω
6
nnfi
⊢
A
∈
ω
→
A
∈
Fin
7
5
6
elind
⊢
A
∈
ω
→
A
∈
𝒫
ω
∩
Fin