Metamath Proof Explorer


Theorem ackbij1lem5

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 19-Nov-2014) (Proof shortened by AV, 18-Jul-2022)

Ref Expression
Assertion ackbij1lem5 A ω card 𝒫 suc A = card 𝒫 A + 𝑜 card 𝒫 A

Proof

Step Hyp Ref Expression
1 peano2 A ω suc A ω
2 pw2eng suc A ω 𝒫 suc A 2 𝑜 suc A
3 1 2 syl A ω 𝒫 suc A 2 𝑜 suc A
4 df-suc suc A = A A
5 4 oveq2i 2 𝑜 suc A = 2 𝑜 A A
6 elex A ω A V
7 snex A V
8 7 a1i A ω A V
9 2onn 2 𝑜 ω
10 9 elexi 2 𝑜 V
11 10 a1i A ω 2 𝑜 V
12 nnord A ω Ord A
13 orddisj Ord A A A =
14 12 13 syl A ω A A =
15 mapunen A V A V 2 𝑜 V A A = 2 𝑜 A A 2 𝑜 A × 2 𝑜 A
16 6 8 11 14 15 syl31anc A ω 2 𝑜 A A 2 𝑜 A × 2 𝑜 A
17 ovex 2 𝑜 A V
18 17 enref 2 𝑜 A 2 𝑜 A
19 2on 2 𝑜 On
20 19 a1i A ω 2 𝑜 On
21 id A ω A ω
22 20 21 mapsnend A ω 2 𝑜 A 2 𝑜
23 xpen 2 𝑜 A 2 𝑜 A 2 𝑜 A 2 𝑜 2 𝑜 A × 2 𝑜 A 2 𝑜 A × 2 𝑜
24 18 22 23 sylancr A ω 2 𝑜 A × 2 𝑜 A 2 𝑜 A × 2 𝑜
25 entr 2 𝑜 A A 2 𝑜 A × 2 𝑜 A 2 𝑜 A × 2 𝑜 A 2 𝑜 A × 2 𝑜 2 𝑜 A A 2 𝑜 A × 2 𝑜
26 16 24 25 syl2anc A ω 2 𝑜 A A 2 𝑜 A × 2 𝑜
27 5 26 eqbrtrid A ω 2 𝑜 suc A 2 𝑜 A × 2 𝑜
28 17 10 xpcomen 2 𝑜 A × 2 𝑜 2 𝑜 × 2 𝑜 A
29 entr 2 𝑜 suc A 2 𝑜 A × 2 𝑜 2 𝑜 A × 2 𝑜 2 𝑜 × 2 𝑜 A 2 𝑜 suc A 2 𝑜 × 2 𝑜 A
30 27 28 29 sylancl A ω 2 𝑜 suc A 2 𝑜 × 2 𝑜 A
31 10 enref 2 𝑜 2 𝑜
32 pw2eng A ω 𝒫 A 2 𝑜 A
33 xpen 2 𝑜 2 𝑜 𝒫 A 2 𝑜 A 2 𝑜 × 𝒫 A 2 𝑜 × 2 𝑜 A
34 31 32 33 sylancr A ω 2 𝑜 × 𝒫 A 2 𝑜 × 2 𝑜 A
35 34 ensymd A ω 2 𝑜 × 2 𝑜 A 2 𝑜 × 𝒫 A
36 entr 2 𝑜 suc A 2 𝑜 × 2 𝑜 A 2 𝑜 × 2 𝑜 A 2 𝑜 × 𝒫 A 2 𝑜 suc A 2 𝑜 × 𝒫 A
37 30 35 36 syl2anc A ω 2 𝑜 suc A 2 𝑜 × 𝒫 A
38 entr 𝒫 suc A 2 𝑜 suc A 2 𝑜 suc A 2 𝑜 × 𝒫 A 𝒫 suc A 2 𝑜 × 𝒫 A
39 3 37 38 syl2anc A ω 𝒫 suc A 2 𝑜 × 𝒫 A
40 xp2dju 2 𝑜 × 𝒫 A = 𝒫 A ⊔︀ 𝒫 A
41 39 40 breqtrdi A ω 𝒫 suc A 𝒫 A ⊔︀ 𝒫 A
42 nnfi A ω A Fin
43 pwfi A Fin 𝒫 A Fin
44 42 43 sylib A ω 𝒫 A Fin
45 ficardid 𝒫 A Fin card 𝒫 A 𝒫 A
46 44 45 syl A ω card 𝒫 A 𝒫 A
47 djuen card 𝒫 A 𝒫 A card 𝒫 A 𝒫 A card 𝒫 A ⊔︀ card 𝒫 A 𝒫 A ⊔︀ 𝒫 A
48 46 46 47 syl2anc A ω card 𝒫 A ⊔︀ card 𝒫 A 𝒫 A ⊔︀ 𝒫 A
49 48 ensymd A ω 𝒫 A ⊔︀ 𝒫 A card 𝒫 A ⊔︀ card 𝒫 A
50 entr 𝒫 suc A 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 𝒫 A card 𝒫 A ⊔︀ card 𝒫 A 𝒫 suc A card 𝒫 A ⊔︀ card 𝒫 A
51 41 49 50 syl2anc A ω 𝒫 suc A card 𝒫 A ⊔︀ card 𝒫 A
52 carden2b 𝒫 suc A card 𝒫 A ⊔︀ card 𝒫 A card 𝒫 suc A = card card 𝒫 A ⊔︀ card 𝒫 A
53 51 52 syl A ω card 𝒫 suc A = card card 𝒫 A ⊔︀ card 𝒫 A
54 ficardom 𝒫 A Fin card 𝒫 A ω
55 44 54 syl A ω card 𝒫 A ω
56 nnadju card 𝒫 A ω card 𝒫 A ω card card 𝒫 A ⊔︀ card 𝒫 A = card 𝒫 A + 𝑜 card 𝒫 A
57 55 55 56 syl2anc A ω card card 𝒫 A ⊔︀ card 𝒫 A = card 𝒫 A + 𝑜 card 𝒫 A
58 53 57 eqtrd A ω card 𝒫 suc A = card 𝒫 A + 𝑜 card 𝒫 A