Metamath Proof Explorer


Theorem ackbij2lem1

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion ackbij2lem1 A ω 𝒫 A 𝒫 ω Fin

Proof

Step Hyp Ref Expression
1 ordom Ord ω
2 ordelss Ord ω A ω A ω
3 1 2 mpan A ω A ω
4 3 sspwd A ω 𝒫 A 𝒫 ω
5 4 sselda A ω a 𝒫 A a 𝒫 ω
6 nnfi A ω A Fin
7 elpwi a 𝒫 A a A
8 ssfi A Fin a A a Fin
9 6 7 8 syl2an A ω a 𝒫 A a Fin
10 5 9 elind A ω a 𝒫 A a 𝒫 ω Fin
11 10 ex A ω a 𝒫 A a 𝒫 ω Fin
12 11 ssrdv A ω 𝒫 A 𝒫 ω Fin