Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij2lem1
Next ⟩
ackbij1lem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij2lem1
Description:
Lemma for
ackbij2
.
(Contributed by
Stefan O'Rear
, 18-Nov-2014)
Ref
Expression
Assertion
ackbij2lem1
⊢
A
∈
ω
→
𝒫
A
⊆
𝒫
ω
∩
Fin
Proof
Step
Hyp
Ref
Expression
1
ordom
⊢
Ord
⁡
ω
2
ordelss
⊢
Ord
⁡
ω
∧
A
∈
ω
→
A
⊆
ω
3
1
2
mpan
⊢
A
∈
ω
→
A
⊆
ω
4
3
sspwd
⊢
A
∈
ω
→
𝒫
A
⊆
𝒫
ω
5
4
sselda
⊢
A
∈
ω
∧
a
∈
𝒫
A
→
a
∈
𝒫
ω
6
nnfi
⊢
A
∈
ω
→
A
∈
Fin
7
elpwi
⊢
a
∈
𝒫
A
→
a
⊆
A
8
ssfi
⊢
A
∈
Fin
∧
a
⊆
A
→
a
∈
Fin
9
6
7
8
syl2an
⊢
A
∈
ω
∧
a
∈
𝒫
A
→
a
∈
Fin
10
5
9
elind
⊢
A
∈
ω
∧
a
∈
𝒫
A
→
a
∈
𝒫
ω
∩
Fin
11
10
ex
⊢
A
∈
ω
→
a
∈
𝒫
A
→
a
∈
𝒫
ω
∩
Fin
12
11
ssrdv
⊢
A
∈
ω
→
𝒫
A
⊆
𝒫
ω
∩
Fin