Metamath Proof Explorer


Theorem ackbij2lem2

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypotheses ackbij.f F = x 𝒫 ω Fin card y x y × 𝒫 y
ackbij.g G = x V y 𝒫 dom x F x y
Assertion ackbij2lem2 A ω rec G A : R1 A 1-1 onto card R1 A

Proof

Step Hyp Ref Expression
1 ackbij.f F = x 𝒫 ω Fin card y x y × 𝒫 y
2 ackbij.g G = x V y 𝒫 dom x F x y
3 fveq2 a = rec G a = rec G
4 fveq2 a = R1 a = R1
5 2fveq3 a = card R1 a = card R1
6 3 4 5 f1oeq123d a = rec G a : R1 a 1-1 onto card R1 a rec G : R1 1-1 onto card R1
7 fveq2 a = b rec G a = rec G b
8 fveq2 a = b R1 a = R1 b
9 2fveq3 a = b card R1 a = card R1 b
10 7 8 9 f1oeq123d a = b rec G a : R1 a 1-1 onto card R1 a rec G b : R1 b 1-1 onto card R1 b
11 fveq2 a = suc b rec G a = rec G suc b
12 fveq2 a = suc b R1 a = R1 suc b
13 2fveq3 a = suc b card R1 a = card R1 suc b
14 11 12 13 f1oeq123d a = suc b rec G a : R1 a 1-1 onto card R1 a rec G suc b : R1 suc b 1-1 onto card R1 suc b
15 fveq2 a = A rec G a = rec G A
16 fveq2 a = A R1 a = R1 A
17 2fveq3 a = A card R1 a = card R1 A
18 15 16 17 f1oeq123d a = A rec G a : R1 a 1-1 onto card R1 a rec G A : R1 A 1-1 onto card R1 A
19 f1o0 : 1-1 onto
20 0ex V
21 20 rdg0 rec G =
22 f1oeq1 rec G = rec G : R1 1-1 onto card R1 : R1 1-1 onto card R1
23 21 22 ax-mp rec G : R1 1-1 onto card R1 : R1 1-1 onto card R1
24 r10 R1 =
25 24 fveq2i card R1 = card
26 card0 card =
27 25 26 eqtri card R1 =
28 f1oeq23 R1 = card R1 = : R1 1-1 onto card R1 : 1-1 onto
29 24 27 28 mp2an : R1 1-1 onto card R1 : 1-1 onto
30 23 29 bitri rec G : R1 1-1 onto card R1 : 1-1 onto
31 19 30 mpbir rec G : R1 1-1 onto card R1
32 1 ackbij1lem17 F : 𝒫 ω Fin 1-1 ω
33 32 a1i b ω F : 𝒫 ω Fin 1-1 ω
34 r1fin b ω R1 b Fin
35 ficardom R1 b Fin card R1 b ω
36 34 35 syl b ω card R1 b ω
37 ackbij2lem1 card R1 b ω 𝒫 card R1 b 𝒫 ω Fin
38 36 37 syl b ω 𝒫 card R1 b 𝒫 ω Fin
39 f1ores F : 𝒫 ω Fin 1-1 ω 𝒫 card R1 b 𝒫 ω Fin F 𝒫 card R1 b : 𝒫 card R1 b 1-1 onto F 𝒫 card R1 b
40 33 38 39 syl2anc b ω F 𝒫 card R1 b : 𝒫 card R1 b 1-1 onto F 𝒫 card R1 b
41 1 ackbij1b card R1 b ω F 𝒫 card R1 b = card 𝒫 card R1 b
42 36 41 syl b ω F 𝒫 card R1 b = card 𝒫 card R1 b
43 ficardid R1 b Fin card R1 b R1 b
44 pwen card R1 b R1 b 𝒫 card R1 b 𝒫 R1 b
45 carden2b 𝒫 card R1 b 𝒫 R1 b card 𝒫 card R1 b = card 𝒫 R1 b
46 34 43 44 45 4syl b ω card 𝒫 card R1 b = card 𝒫 R1 b
47 42 46 eqtrd b ω F 𝒫 card R1 b = card 𝒫 R1 b
48 47 f1oeq3d b ω F 𝒫 card R1 b : 𝒫 card R1 b 1-1 onto F 𝒫 card R1 b F 𝒫 card R1 b : 𝒫 card R1 b 1-1 onto card 𝒫 R1 b
49 40 48 mpbid b ω F 𝒫 card R1 b : 𝒫 card R1 b 1-1 onto card 𝒫 R1 b
50 49 adantr b ω rec G b : R1 b 1-1 onto card R1 b F 𝒫 card R1 b : 𝒫 card R1 b 1-1 onto card 𝒫 R1 b
51 f1opw rec G b : R1 b 1-1 onto card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto 𝒫 card R1 b
52 51 adantl b ω rec G b : R1 b 1-1 onto card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto 𝒫 card R1 b
53 f1oco F 𝒫 card R1 b : 𝒫 card R1 b 1-1 onto card 𝒫 R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto 𝒫 card R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto card 𝒫 R1 b
54 50 52 53 syl2anc b ω rec G b : R1 b 1-1 onto card R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto card 𝒫 R1 b
55 frsuc b ω rec G ω suc b = G rec G ω b
56 peano2 b ω suc b ω
57 56 fvresd b ω rec G ω suc b = rec G suc b
58 fvres b ω rec G ω b = rec G b
59 58 fveq2d b ω G rec G ω b = G rec G b
60 fvex rec G b V
61 dmeq x = rec G b dom x = dom rec G b
62 61 pweqd x = rec G b 𝒫 dom x = 𝒫 dom rec G b
63 imaeq1 x = rec G b x y = rec G b y
64 63 fveq2d x = rec G b F x y = F rec G b y
65 62 64 mpteq12dv x = rec G b y 𝒫 dom x F x y = y 𝒫 dom rec G b F rec G b y
66 60 dmex dom rec G b V
67 66 pwex 𝒫 dom rec G b V
68 67 mptex y 𝒫 dom rec G b F rec G b y V
69 65 2 68 fvmpt rec G b V G rec G b = y 𝒫 dom rec G b F rec G b y
70 60 69 ax-mp G rec G b = y 𝒫 dom rec G b F rec G b y
71 59 70 eqtrdi b ω G rec G ω b = y 𝒫 dom rec G b F rec G b y
72 55 57 71 3eqtr3d b ω rec G suc b = y 𝒫 dom rec G b F rec G b y
73 72 adantr b ω rec G b : R1 b 1-1 onto card R1 b rec G suc b = y 𝒫 dom rec G b F rec G b y
74 f1odm rec G b : R1 b 1-1 onto card R1 b dom rec G b = R1 b
75 74 adantl b ω rec G b : R1 b 1-1 onto card R1 b dom rec G b = R1 b
76 75 pweqd b ω rec G b : R1 b 1-1 onto card R1 b 𝒫 dom rec G b = 𝒫 R1 b
77 76 mpteq1d b ω rec G b : R1 b 1-1 onto card R1 b y 𝒫 dom rec G b F rec G b y = y 𝒫 R1 b F rec G b y
78 fvex F rec G b y V
79 eqid y 𝒫 R1 b F rec G b y = y 𝒫 R1 b F rec G b y
80 78 79 fnmpti y 𝒫 R1 b F rec G b y Fn 𝒫 R1 b
81 80 a1i b ω rec G b : R1 b 1-1 onto card R1 b y 𝒫 R1 b F rec G b y Fn 𝒫 R1 b
82 f1ofn F 𝒫 card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto card 𝒫 R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a Fn 𝒫 R1 b
83 54 82 syl b ω rec G b : R1 b 1-1 onto card R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a Fn 𝒫 R1 b
84 f1of a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto 𝒫 card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 𝒫 card R1 b
85 52 84 syl b ω rec G b : R1 b 1-1 onto card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 𝒫 card R1 b
86 85 ffvelrnda b ω rec G b : R1 b 1-1 onto card R1 b c 𝒫 R1 b a 𝒫 R1 b rec G b a c 𝒫 card R1 b
87 86 fvresd b ω rec G b : R1 b 1-1 onto card R1 b c 𝒫 R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a c = F a 𝒫 R1 b rec G b a c
88 imaeq2 a = c rec G b a = rec G b c
89 eqid a 𝒫 R1 b rec G b a = a 𝒫 R1 b rec G b a
90 60 imaex rec G b c V
91 88 89 90 fvmpt c 𝒫 R1 b a 𝒫 R1 b rec G b a c = rec G b c
92 91 adantl b ω rec G b : R1 b 1-1 onto card R1 b c 𝒫 R1 b a 𝒫 R1 b rec G b a c = rec G b c
93 92 fveq2d b ω rec G b : R1 b 1-1 onto card R1 b c 𝒫 R1 b F a 𝒫 R1 b rec G b a c = F rec G b c
94 87 93 eqtrd b ω rec G b : R1 b 1-1 onto card R1 b c 𝒫 R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a c = F rec G b c
95 fvco3 a 𝒫 R1 b rec G b a : 𝒫 R1 b 𝒫 card R1 b c 𝒫 R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a c = F 𝒫 card R1 b a 𝒫 R1 b rec G b a c
96 85 95 sylan b ω rec G b : R1 b 1-1 onto card R1 b c 𝒫 R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a c = F 𝒫 card R1 b a 𝒫 R1 b rec G b a c
97 imaeq2 y = c rec G b y = rec G b c
98 97 fveq2d y = c F rec G b y = F rec G b c
99 fvex F rec G b c V
100 98 79 99 fvmpt c 𝒫 R1 b y 𝒫 R1 b F rec G b y c = F rec G b c
101 100 adantl b ω rec G b : R1 b 1-1 onto card R1 b c 𝒫 R1 b y 𝒫 R1 b F rec G b y c = F rec G b c
102 94 96 101 3eqtr4rd b ω rec G b : R1 b 1-1 onto card R1 b c 𝒫 R1 b y 𝒫 R1 b F rec G b y c = F 𝒫 card R1 b a 𝒫 R1 b rec G b a c
103 81 83 102 eqfnfvd b ω rec G b : R1 b 1-1 onto card R1 b y 𝒫 R1 b F rec G b y = F 𝒫 card R1 b a 𝒫 R1 b rec G b a
104 77 103 eqtrd b ω rec G b : R1 b 1-1 onto card R1 b y 𝒫 dom rec G b F rec G b y = F 𝒫 card R1 b a 𝒫 R1 b rec G b a
105 73 104 eqtrd b ω rec G b : R1 b 1-1 onto card R1 b rec G suc b = F 𝒫 card R1 b a 𝒫 R1 b rec G b a
106 f1oeq1 rec G suc b = F 𝒫 card R1 b a 𝒫 R1 b rec G b a rec G suc b : R1 suc b 1-1 onto card R1 suc b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : R1 suc b 1-1 onto card R1 suc b
107 105 106 syl b ω rec G b : R1 b 1-1 onto card R1 b rec G suc b : R1 suc b 1-1 onto card R1 suc b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : R1 suc b 1-1 onto card R1 suc b
108 nnon b ω b On
109 r1suc b On R1 suc b = 𝒫 R1 b
110 108 109 syl b ω R1 suc b = 𝒫 R1 b
111 110 fveq2d b ω card R1 suc b = card 𝒫 R1 b
112 f1oeq23 R1 suc b = 𝒫 R1 b card R1 suc b = card 𝒫 R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : R1 suc b 1-1 onto card R1 suc b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto card 𝒫 R1 b
113 110 111 112 syl2anc b ω F 𝒫 card R1 b a 𝒫 R1 b rec G b a : R1 suc b 1-1 onto card R1 suc b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto card 𝒫 R1 b
114 113 adantr b ω rec G b : R1 b 1-1 onto card R1 b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : R1 suc b 1-1 onto card R1 suc b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto card 𝒫 R1 b
115 107 114 bitrd b ω rec G b : R1 b 1-1 onto card R1 b rec G suc b : R1 suc b 1-1 onto card R1 suc b F 𝒫 card R1 b a 𝒫 R1 b rec G b a : 𝒫 R1 b 1-1 onto card 𝒫 R1 b
116 54 115 mpbird b ω rec G b : R1 b 1-1 onto card R1 b rec G suc b : R1 suc b 1-1 onto card R1 suc b
117 116 ex b ω rec G b : R1 b 1-1 onto card R1 b rec G suc b : R1 suc b 1-1 onto card R1 suc b
118 6 10 14 18 31 117 finds A ω rec G A : R1 A 1-1 onto card R1 A