Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
|
2 |
|
ackbij.g |
|
3 |
|
fveq2 |
|
4 |
|
suceq |
|
5 |
4
|
fveq2d |
|
6 |
|
fveq2 |
|
7 |
5 6
|
reseq12d |
|
8 |
3 7
|
eqeq12d |
|
9 |
|
fveq2 |
|
10 |
|
suceq |
|
11 |
10
|
fveq2d |
|
12 |
|
fveq2 |
|
13 |
11 12
|
reseq12d |
|
14 |
9 13
|
eqeq12d |
|
15 |
|
fveq2 |
|
16 |
|
suceq |
|
17 |
16
|
fveq2d |
|
18 |
|
fveq2 |
|
19 |
17 18
|
reseq12d |
|
20 |
15 19
|
eqeq12d |
|
21 |
|
fveq2 |
|
22 |
|
suceq |
|
23 |
22
|
fveq2d |
|
24 |
|
fveq2 |
|
25 |
23 24
|
reseq12d |
|
26 |
21 25
|
eqeq12d |
|
27 |
|
res0 |
|
28 |
|
r10 |
|
29 |
28
|
reseq2i |
|
30 |
|
0ex |
|
31 |
30
|
rdg0 |
|
32 |
27 29 31
|
3eqtr4ri |
|
33 |
|
peano2 |
|
34 |
1 2
|
ackbij2lem2 |
|
35 |
33 34
|
syl |
|
36 |
|
f1ofn |
|
37 |
35 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
|
peano2 |
|
40 |
1 2
|
ackbij2lem2 |
|
41 |
|
f1ofn |
|
42 |
33 39 40 41
|
4syl |
|
43 |
|
nnon |
|
44 |
33 43
|
syl |
|
45 |
|
r1sssuc |
|
46 |
44 45
|
syl |
|
47 |
|
fnssres |
|
48 |
42 46 47
|
syl2anc |
|
49 |
48
|
adantr |
|
50 |
|
nnon |
|
51 |
|
r1suc |
|
52 |
50 51
|
syl |
|
53 |
52
|
eleq2d |
|
54 |
53
|
biimpa |
|
55 |
54
|
elpwid |
|
56 |
|
resima2 |
|
57 |
55 56
|
syl |
|
58 |
57
|
fveq2d |
|
59 |
|
fvex |
|
60 |
59
|
resex |
|
61 |
|
dmeq |
|
62 |
61
|
pweqd |
|
63 |
|
imaeq1 |
|
64 |
63
|
fveq2d |
|
65 |
62 64
|
mpteq12dv |
|
66 |
60
|
dmex |
|
67 |
66
|
pwex |
|
68 |
67
|
mptex |
|
69 |
65 2 68
|
fvmpt |
|
70 |
60 69
|
ax-mp |
|
71 |
70
|
fveq1i |
|
72 |
|
r1sssuc |
|
73 |
50 72
|
syl |
|
74 |
|
fnssres |
|
75 |
37 73 74
|
syl2anc |
|
76 |
75
|
fndmd |
|
77 |
76
|
pweqd |
|
78 |
77
|
adantr |
|
79 |
54 78
|
eleqtrrd |
|
80 |
|
imaeq2 |
|
81 |
80
|
fveq2d |
|
82 |
|
eqid |
|
83 |
|
fvex |
|
84 |
81 82 83
|
fvmpt |
|
85 |
79 84
|
syl |
|
86 |
71 85
|
eqtrid |
|
87 |
|
dmeq |
|
88 |
87
|
pweqd |
|
89 |
|
imaeq1 |
|
90 |
89
|
fveq2d |
|
91 |
88 90
|
mpteq12dv |
|
92 |
59
|
dmex |
|
93 |
92
|
pwex |
|
94 |
93
|
mptex |
|
95 |
91 2 94
|
fvmpt |
|
96 |
59 95
|
ax-mp |
|
97 |
96
|
fveq1i |
|
98 |
|
r1tr |
|
99 |
98
|
a1i |
|
100 |
|
dftr4 |
|
101 |
99 100
|
sylib |
|
102 |
101
|
sselda |
|
103 |
|
f1odm |
|
104 |
35 103
|
syl |
|
105 |
104
|
pweqd |
|
106 |
105
|
adantr |
|
107 |
102 106
|
eleqtrrd |
|
108 |
|
imaeq2 |
|
109 |
108
|
fveq2d |
|
110 |
|
eqid |
|
111 |
|
fvex |
|
112 |
109 110 111
|
fvmpt |
|
113 |
107 112
|
syl |
|
114 |
97 113
|
eqtrid |
|
115 |
58 86 114
|
3eqtr4d |
|
116 |
115
|
adantlr |
|
117 |
|
fveq2 |
|
118 |
117
|
fveq1d |
|
119 |
118
|
ad2antlr |
|
120 |
|
rdgsuc |
|
121 |
44 120
|
syl |
|
122 |
121
|
fveq1d |
|
123 |
122
|
ad2antrr |
|
124 |
116 119 123
|
3eqtr4rd |
|
125 |
|
fvres |
|
126 |
125
|
adantl |
|
127 |
|
rdgsuc |
|
128 |
50 127
|
syl |
|
129 |
128
|
fveq1d |
|
130 |
129
|
ad2antrr |
|
131 |
124 126 130
|
3eqtr4rd |
|
132 |
38 49 131
|
eqfnfvd |
|
133 |
132
|
ex |
|
134 |
8 14 20 26 32 133
|
finds |
|
135 |
|
resss |
|
136 |
134 135
|
eqsstrdi |
|