| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|
| 2 |
|
ackbij.g |
|
| 3 |
|
fveq2 |
|
| 4 |
|
suceq |
|
| 5 |
4
|
fveq2d |
|
| 6 |
|
fveq2 |
|
| 7 |
5 6
|
reseq12d |
|
| 8 |
3 7
|
eqeq12d |
|
| 9 |
|
fveq2 |
|
| 10 |
|
suceq |
|
| 11 |
10
|
fveq2d |
|
| 12 |
|
fveq2 |
|
| 13 |
11 12
|
reseq12d |
|
| 14 |
9 13
|
eqeq12d |
|
| 15 |
|
fveq2 |
|
| 16 |
|
suceq |
|
| 17 |
16
|
fveq2d |
|
| 18 |
|
fveq2 |
|
| 19 |
17 18
|
reseq12d |
|
| 20 |
15 19
|
eqeq12d |
|
| 21 |
|
fveq2 |
|
| 22 |
|
suceq |
|
| 23 |
22
|
fveq2d |
|
| 24 |
|
fveq2 |
|
| 25 |
23 24
|
reseq12d |
|
| 26 |
21 25
|
eqeq12d |
|
| 27 |
|
res0 |
|
| 28 |
|
r10 |
|
| 29 |
28
|
reseq2i |
|
| 30 |
|
0ex |
|
| 31 |
30
|
rdg0 |
|
| 32 |
27 29 31
|
3eqtr4ri |
|
| 33 |
|
peano2 |
|
| 34 |
1 2
|
ackbij2lem2 |
|
| 35 |
33 34
|
syl |
|
| 36 |
|
f1ofn |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
adantr |
|
| 39 |
|
peano2 |
|
| 40 |
1 2
|
ackbij2lem2 |
|
| 41 |
|
f1ofn |
|
| 42 |
33 39 40 41
|
4syl |
|
| 43 |
|
nnon |
|
| 44 |
33 43
|
syl |
|
| 45 |
|
r1sssuc |
|
| 46 |
44 45
|
syl |
|
| 47 |
|
fnssres |
|
| 48 |
42 46 47
|
syl2anc |
|
| 49 |
48
|
adantr |
|
| 50 |
|
nnon |
|
| 51 |
|
r1suc |
|
| 52 |
50 51
|
syl |
|
| 53 |
52
|
eleq2d |
|
| 54 |
53
|
biimpa |
|
| 55 |
54
|
elpwid |
|
| 56 |
|
resima2 |
|
| 57 |
55 56
|
syl |
|
| 58 |
57
|
fveq2d |
|
| 59 |
|
fvex |
|
| 60 |
59
|
resex |
|
| 61 |
|
dmeq |
|
| 62 |
61
|
pweqd |
|
| 63 |
|
imaeq1 |
|
| 64 |
63
|
fveq2d |
|
| 65 |
62 64
|
mpteq12dv |
|
| 66 |
60
|
dmex |
|
| 67 |
66
|
pwex |
|
| 68 |
67
|
mptex |
|
| 69 |
65 2 68
|
fvmpt |
|
| 70 |
60 69
|
ax-mp |
|
| 71 |
70
|
fveq1i |
|
| 72 |
|
r1sssuc |
|
| 73 |
50 72
|
syl |
|
| 74 |
|
fnssres |
|
| 75 |
37 73 74
|
syl2anc |
|
| 76 |
75
|
fndmd |
|
| 77 |
76
|
pweqd |
|
| 78 |
77
|
adantr |
|
| 79 |
54 78
|
eleqtrrd |
|
| 80 |
|
imaeq2 |
|
| 81 |
80
|
fveq2d |
|
| 82 |
|
eqid |
|
| 83 |
|
fvex |
|
| 84 |
81 82 83
|
fvmpt |
|
| 85 |
79 84
|
syl |
|
| 86 |
71 85
|
eqtrid |
|
| 87 |
|
dmeq |
|
| 88 |
87
|
pweqd |
|
| 89 |
|
imaeq1 |
|
| 90 |
89
|
fveq2d |
|
| 91 |
88 90
|
mpteq12dv |
|
| 92 |
59
|
dmex |
|
| 93 |
92
|
pwex |
|
| 94 |
93
|
mptex |
|
| 95 |
91 2 94
|
fvmpt |
|
| 96 |
59 95
|
ax-mp |
|
| 97 |
96
|
fveq1i |
|
| 98 |
|
r1tr |
|
| 99 |
98
|
a1i |
|
| 100 |
|
dftr4 |
|
| 101 |
99 100
|
sylib |
|
| 102 |
101
|
sselda |
|
| 103 |
|
f1odm |
|
| 104 |
35 103
|
syl |
|
| 105 |
104
|
pweqd |
|
| 106 |
105
|
adantr |
|
| 107 |
102 106
|
eleqtrrd |
|
| 108 |
|
imaeq2 |
|
| 109 |
108
|
fveq2d |
|
| 110 |
|
eqid |
|
| 111 |
|
fvex |
|
| 112 |
109 110 111
|
fvmpt |
|
| 113 |
107 112
|
syl |
|
| 114 |
97 113
|
eqtrid |
|
| 115 |
58 86 114
|
3eqtr4d |
|
| 116 |
115
|
adantlr |
|
| 117 |
|
fveq2 |
|
| 118 |
117
|
fveq1d |
|
| 119 |
118
|
ad2antlr |
|
| 120 |
|
rdgsuc |
|
| 121 |
44 120
|
syl |
|
| 122 |
121
|
fveq1d |
|
| 123 |
122
|
ad2antrr |
|
| 124 |
116 119 123
|
3eqtr4rd |
|
| 125 |
|
fvres |
|
| 126 |
125
|
adantl |
|
| 127 |
|
rdgsuc |
|
| 128 |
50 127
|
syl |
|
| 129 |
128
|
fveq1d |
|
| 130 |
129
|
ad2antrr |
|
| 131 |
124 126 130
|
3eqtr4rd |
|
| 132 |
38 49 131
|
eqfnfvd |
|
| 133 |
132
|
ex |
|
| 134 |
8 14 20 26 32 133
|
finds |
|
| 135 |
|
resss |
|
| 136 |
134 135
|
eqsstrdi |
|