Metamath Proof Explorer


Theorem ackbij2lem4

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypotheses ackbij.f F = x 𝒫 ω Fin card y x y × 𝒫 y
ackbij.g G = x V y 𝒫 dom x F x y
Assertion ackbij2lem4 A ω B ω B A rec G B rec G A

Proof

Step Hyp Ref Expression
1 ackbij.f F = x 𝒫 ω Fin card y x y × 𝒫 y
2 ackbij.g G = x V y 𝒫 dom x F x y
3 fveq2 a = B rec G a = rec G B
4 3 sseq2d a = B rec G B rec G a rec G B rec G B
5 fveq2 a = b rec G a = rec G b
6 5 sseq2d a = b rec G B rec G a rec G B rec G b
7 fveq2 a = suc b rec G a = rec G suc b
8 7 sseq2d a = suc b rec G B rec G a rec G B rec G suc b
9 fveq2 a = A rec G a = rec G A
10 9 sseq2d a = A rec G B rec G a rec G B rec G A
11 ssidd B ω rec G B rec G B
12 1 2 ackbij2lem3 b ω rec G b rec G suc b
13 12 ad2antrr b ω B ω B b rec G b rec G suc b
14 sstr2 rec G B rec G b rec G b rec G suc b rec G B rec G suc b
15 13 14 syl5com b ω B ω B b rec G B rec G b rec G B rec G suc b
16 4 6 8 10 11 15 findsg A ω B ω B A rec G B rec G A