Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij2lem4
Next ⟩
ackbij2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij2lem4
Description:
Lemma for
ackbij2
.
(Contributed by
Stefan O'Rear
, 18-Nov-2014)
Ref
Expression
Hypotheses
ackbij.f
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⁡
⋃
y
∈
x
y
×
𝒫
y
ackbij.g
⊢
G
=
x
∈
V
⟼
y
∈
𝒫
dom
⁡
x
⟼
F
⁡
x
y
Assertion
ackbij2lem4
⊢
A
∈
ω
∧
B
∈
ω
∧
B
⊆
A
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
A
Proof
Step
Hyp
Ref
Expression
1
ackbij.f
⊢
F
=
x
∈
𝒫
ω
∩
Fin
⟼
card
⁡
⋃
y
∈
x
y
×
𝒫
y
2
ackbij.g
⊢
G
=
x
∈
V
⟼
y
∈
𝒫
dom
⁡
x
⟼
F
⁡
x
y
3
fveq2
⊢
a
=
B
→
rec
⁡
G
∅
⁡
a
=
rec
⁡
G
∅
⁡
B
4
3
sseq2d
⊢
a
=
B
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
a
↔
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
B
5
fveq2
⊢
a
=
b
→
rec
⁡
G
∅
⁡
a
=
rec
⁡
G
∅
⁡
b
6
5
sseq2d
⊢
a
=
b
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
a
↔
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
b
7
fveq2
⊢
a
=
suc
⁡
b
→
rec
⁡
G
∅
⁡
a
=
rec
⁡
G
∅
⁡
suc
⁡
b
8
7
sseq2d
⊢
a
=
suc
⁡
b
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
a
↔
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
suc
⁡
b
9
fveq2
⊢
a
=
A
→
rec
⁡
G
∅
⁡
a
=
rec
⁡
G
∅
⁡
A
10
9
sseq2d
⊢
a
=
A
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
a
↔
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
A
11
ssidd
⊢
B
∈
ω
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
B
12
1
2
ackbij2lem3
⊢
b
∈
ω
→
rec
⁡
G
∅
⁡
b
⊆
rec
⁡
G
∅
⁡
suc
⁡
b
13
12
ad2antrr
⊢
b
∈
ω
∧
B
∈
ω
∧
B
⊆
b
→
rec
⁡
G
∅
⁡
b
⊆
rec
⁡
G
∅
⁡
suc
⁡
b
14
sstr2
⊢
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
b
→
rec
⁡
G
∅
⁡
b
⊆
rec
⁡
G
∅
⁡
suc
⁡
b
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
suc
⁡
b
15
13
14
syl5com
⊢
b
∈
ω
∧
B
∈
ω
∧
B
⊆
b
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
b
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
suc
⁡
b
16
4
6
8
10
11
15
findsg
⊢
A
∈
ω
∧
B
∈
ω
∧
B
⊆
A
→
rec
⁡
G
∅
⁡
B
⊆
rec
⁡
G
∅
⁡
A