Metamath Proof Explorer


Theorem ackval2012

Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024)

Ref Expression
Assertion ackval2012 Could not format assertion : No typesetting found for |- <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. with typecode |-

Proof

Step Hyp Ref Expression
1 ackval2 Could not format ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) : No typesetting found for |- ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) with typecode |-
2 oveq2 n = 0 2 n = 2 0
3 2 oveq1d n = 0 2 n + 3 = 2 0 + 3
4 2t0e0 2 0 = 0
5 4 oveq1i 2 0 + 3 = 0 + 3
6 3cn 3
7 6 addid2i 0 + 3 = 3
8 5 7 eqtri 2 0 + 3 = 3
9 3 8 eqtrdi n = 0 2 n + 3 = 3
10 0nn0 0 0
11 10 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 0 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 0 e. NN0 ) with typecode |-
12 3nn0 3 0
13 12 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 3 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 3 e. NN0 ) with typecode |-
14 1 9 11 13 fvmptd3 Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 0 ) = 3 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 0 ) = 3 ) with typecode |-
15 oveq2 n = 1 2 n = 2 1
16 15 oveq1d n = 1 2 n + 3 = 2 1 + 3
17 2t1e2 2 1 = 2
18 17 oveq1i 2 1 + 3 = 2 + 3
19 2cn 2
20 3p2e5 3 + 2 = 5
21 6 19 20 addcomli 2 + 3 = 5
22 18 21 eqtri 2 1 + 3 = 5
23 16 22 eqtrdi n = 1 2 n + 3 = 5
24 1nn0 1 0
25 24 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 1 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 1 e. NN0 ) with typecode |-
26 5nn0 5 0
27 26 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 5 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 5 e. NN0 ) with typecode |-
28 1 23 25 27 fvmptd3 Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 1 ) = 5 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 1 ) = 5 ) with typecode |-
29 oveq2 n = 2 2 n = 2 2
30 29 oveq1d n = 2 2 n + 3 = 2 2 + 3
31 2t2e4 2 2 = 4
32 31 oveq1i 2 2 + 3 = 4 + 3
33 4p3e7 4 + 3 = 7
34 32 33 eqtri 2 2 + 3 = 7
35 30 34 eqtrdi n = 2 2 n + 3 = 7
36 2nn0 2 0
37 36 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 2 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 2 e. NN0 ) with typecode |-
38 7nn0 7 0
39 38 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 7 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 7 e. NN0 ) with typecode |-
40 1 35 37 39 fvmptd3 Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 2 ) = 7 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 2 ) = 7 ) with typecode |-
41 14 28 40 oteq123d Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. ) with typecode |-
42 1 41 ax-mp Could not format <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. : No typesetting found for |- <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. with typecode |-