Metamath Proof Explorer


Theorem ackval3

Description: The Ackermann function at 3. (Contributed by AV, 7-May-2024)

Ref Expression
Assertion ackval3 Could not format assertion : No typesetting found for |- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-3 3 = 2 + 1
2 1 fveq2i Could not format ( Ack ` 3 ) = ( Ack ` ( 2 + 1 ) ) : No typesetting found for |- ( Ack ` 3 ) = ( Ack ` ( 2 + 1 ) ) with typecode |-
3 2nn0 2 0
4 ackvalsuc1mpt Could not format ( 2 e. NN0 -> ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) ) : No typesetting found for |- ( 2 e. NN0 -> ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) ) with typecode |-
5 3 4 ax-mp Could not format ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) : No typesetting found for |- ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) with typecode |-
6 peano2nn0 n 0 n + 1 0
7 3nn0 3 0
8 ackval2 Could not format ( Ack ` 2 ) = ( i e. NN0 |-> ( ( 2 x. i ) + 3 ) ) : No typesetting found for |- ( Ack ` 2 ) = ( i e. NN0 |-> ( ( 2 x. i ) + 3 ) ) with typecode |-
9 8 itcovalt2 Could not format ( ( ( n + 1 ) e. NN0 /\ 3 e. NN0 ) -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) : No typesetting found for |- ( ( ( n + 1 ) e. NN0 /\ 3 e. NN0 ) -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) with typecode |-
10 6 7 9 sylancl Could not format ( n e. NN0 -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) : No typesetting found for |- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) with typecode |-
11 10 fveq1d Could not format ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) ) : No typesetting found for |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) ) with typecode |-
12 eqidd n 0 i 0 i + 3 2 n + 1 3 = i 0 i + 3 2 n + 1 3
13 oveq1 i = 1 i + 3 = 1 + 3
14 3cn 3
15 ax-1cn 1
16 3p1e4 3 + 1 = 4
17 14 15 16 addcomli 1 + 3 = 4
18 13 17 eqtrdi i = 1 i + 3 = 4
19 18 oveq1d i = 1 i + 3 2 n + 1 = 4 2 n + 1
20 19 oveq1d i = 1 i + 3 2 n + 1 3 = 4 2 n + 1 3
21 20 adantl n 0 i = 1 i + 3 2 n + 1 3 = 4 2 n + 1 3
22 1nn0 1 0
23 22 a1i n 0 1 0
24 ovexd n 0 4 2 n + 1 3 V
25 12 21 23 24 fvmptd n 0 i 0 i + 3 2 n + 1 3 1 = 4 2 n + 1 3
26 sq2 2 2 = 4
27 26 eqcomi 4 = 2 2
28 27 a1i n 0 4 = 2 2
29 28 oveq1d n 0 4 2 n + 1 = 2 2 2 n + 1
30 2cnd n 0 2
31 3 a1i n 0 2 0
32 30 6 31 expaddd n 0 2 2 + n + 1 = 2 2 2 n + 1
33 nn0cn n 0 n
34 1cnd n 0 1
35 30 33 34 add12d n 0 2 + n + 1 = n + 2 + 1
36 2p1e3 2 + 1 = 3
37 36 oveq2i n + 2 + 1 = n + 3
38 35 37 eqtrdi n 0 2 + n + 1 = n + 3
39 38 oveq2d n 0 2 2 + n + 1 = 2 n + 3
40 29 32 39 3eqtr2d n 0 4 2 n + 1 = 2 n + 3
41 40 oveq1d n 0 4 2 n + 1 3 = 2 n + 3 3
42 11 25 41 3eqtrd Could not format ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) : No typesetting found for |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-
43 42 mpteq2ia Could not format ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) : No typesetting found for |- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-
44 2 5 43 3eqtri Could not format ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) : No typesetting found for |- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-