Metamath Proof Explorer


Theorem ackval3012

Description: The Ackermann function at (3,0), (3,1), (3,2). (Contributed by AV, 7-May-2024)

Ref Expression
Assertion ackval3012 Ack30Ack31Ack32=51329

Proof

Step Hyp Ref Expression
1 ackval3 Ack3=n02n+33
2 oveq1 n=0n+3=0+3
3 3cn 3
4 3 addlidi 0+3=3
5 2 4 eqtrdi n=0n+3=3
6 5 oveq2d n=02n+3=23
7 6 oveq1d n=02n+33=233
8 cu2 23=8
9 8 oveq1i 233=83
10 5cn 5
11 5p3e8 5+3=8
12 11 eqcomi 8=5+3
13 10 3 12 mvrraddi 83=5
14 9 13 eqtri 233=5
15 7 14 eqtrdi n=02n+33=5
16 0nn0 00
17 16 a1i Ack3=n02n+3300
18 5nn0 50
19 18 a1i Ack3=n02n+3350
20 1 15 17 19 fvmptd3 Ack3=n02n+33Ack30=5
21 oveq1 n=1n+3=1+3
22 ax-1cn 1
23 3p1e4 3+1=4
24 3 22 23 addcomli 1+3=4
25 21 24 eqtrdi n=1n+3=4
26 25 oveq2d n=12n+3=24
27 26 oveq1d n=12n+33=243
28 2exp4 24=16
29 28 oveq1i 243=163
30 1nn0 10
31 3nn0 30
32 30 31 deccl 130
33 32 nn0cni 13
34 eqid 13=13
35 3p3e6 3+3=6
36 30 31 31 34 35 decaddi 13+3=16
37 36 eqcomi 16=13+3
38 33 3 37 mvrraddi 163=13
39 29 38 eqtri 243=13
40 27 39 eqtrdi n=12n+33=13
41 30 a1i Ack3=n02n+3310
42 32 a1i Ack3=n02n+33130
43 1 40 41 42 fvmptd3 Ack3=n02n+33Ack31=13
44 oveq1 n=2n+3=2+3
45 2cn 2
46 3p2e5 3+2=5
47 3 45 46 addcomli 2+3=5
48 44 47 eqtrdi n=2n+3=5
49 48 oveq2d n=22n+3=25
50 49 oveq1d n=22n+33=253
51 2exp5 25=32
52 51 oveq1i 253=323
53 2nn0 20
54 9nn0 90
55 53 54 deccl 290
56 55 nn0cni 29
57 eqid 29=29
58 2p1e3 2+1=3
59 9p3e12 9+3=12
60 53 54 31 57 58 53 59 decaddci 29+3=32
61 60 eqcomi 32=29+3
62 56 3 61 mvrraddi 323=29
63 52 62 eqtri 253=29
64 50 63 eqtrdi n=22n+33=29
65 53 a1i Ack3=n02n+3320
66 55 a1i Ack3=n02n+33290
67 1 64 65 66 fvmptd3 Ack3=n02n+33Ack32=29
68 20 43 67 oteq123d Ack3=n02n+33Ack30Ack31Ack32=51329
69 1 68 ax-mp Ack30Ack31Ack32=51329