Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
The Ackermann function
ackval40
Next ⟩
ackval41a
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackval40
Description:
The Ackermann function at (4,0).
(Contributed by
AV
, 9-May-2024)
Ref
Expression
Assertion
ackval40
⊢
Ack
⁡
4
⁡
0
=
13
Proof
Step
Hyp
Ref
Expression
1
df-4
⊢
4
=
3
+
1
2
1
fveq2i
⊢
Ack
⁡
4
=
Ack
⁡
3
+
1
3
2
fveq1i
⊢
Ack
⁡
4
⁡
0
=
Ack
⁡
3
+
1
⁡
0
4
3nn0
⊢
3
∈
ℕ
0
5
ackvalsuc0val
⊢
3
∈
ℕ
0
→
Ack
⁡
3
+
1
⁡
0
=
Ack
⁡
3
⁡
1
6
4
5
ax-mp
⊢
Ack
⁡
3
+
1
⁡
0
=
Ack
⁡
3
⁡
1
7
ackval3012
⊢
Ack
⁡
3
⁡
0
Ack
⁡
3
⁡
1
Ack
⁡
3
⁡
2
=
5
13
29
8
fvex
⊢
Ack
⁡
3
⁡
0
∈
V
9
fvex
⊢
Ack
⁡
3
⁡
1
∈
V
10
fvex
⊢
Ack
⁡
3
⁡
2
∈
V
11
8
9
10
otth
⊢
Ack
⁡
3
⁡
0
Ack
⁡
3
⁡
1
Ack
⁡
3
⁡
2
=
5
13
29
↔
Ack
⁡
3
⁡
0
=
5
∧
Ack
⁡
3
⁡
1
=
13
∧
Ack
⁡
3
⁡
2
=
29
12
11
simp2bi
⊢
Ack
⁡
3
⁡
0
Ack
⁡
3
⁡
1
Ack
⁡
3
⁡
2
=
5
13
29
→
Ack
⁡
3
⁡
1
=
13
13
7
12
ax-mp
⊢
Ack
⁡
3
⁡
1
=
13
14
3
6
13
3eqtri
⊢
Ack
⁡
4
⁡
0
=
13