Metamath Proof Explorer


Theorem ackval40

Description: The Ackermann function at (4,0). (Contributed by AV, 9-May-2024)

Ref Expression
Assertion ackval40 Ack 4 0 = 13

Proof

Step Hyp Ref Expression
1 df-4 4 = 3 + 1
2 1 fveq2i Ack 4 = Ack 3 + 1
3 2 fveq1i Ack 4 0 = Ack 3 + 1 0
4 3nn0 3 0
5 ackvalsuc0val 3 0 Ack 3 + 1 0 = Ack 3 1
6 4 5 ax-mp Ack 3 + 1 0 = Ack 3 1
7 ackval3012 Ack 3 0 Ack 3 1 Ack 3 2 = 5 13 29
8 fvex Ack 3 0 V
9 fvex Ack 3 1 V
10 fvex Ack 3 2 V
11 8 9 10 otth Ack 3 0 Ack 3 1 Ack 3 2 = 5 13 29 Ack 3 0 = 5 Ack 3 1 = 13 Ack 3 2 = 29
12 11 simp2bi Ack 3 0 Ack 3 1 Ack 3 2 = 5 13 29 Ack 3 1 = 13
13 7 12 ax-mp Ack 3 1 = 13
14 3 6 13 3eqtri Ack 4 0 = 13