Metamath Proof Explorer


Theorem ackval41a

Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024)

Ref Expression
Assertion ackval41a Could not format assertion : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-4 4 = 3 + 1
2 1 fveq2i Could not format ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) : No typesetting found for |- ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) with typecode |-
3 1e0p1 1 = 0 + 1
4 2 3 fveq12i Could not format ( ( Ack ` 4 ) ` 1 ) = ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) with typecode |-
5 3nn0 3 0
6 0nn0 0 0
7 ackvalsucsucval Could not format ( ( 3 e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) ) : No typesetting found for |- ( ( 3 e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) ) with typecode |-
8 5 6 7 mp2an Could not format ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) with typecode |-
9 3p1e4 3 + 1 = 4
10 9 fveq2i Could not format ( Ack ` ( 3 + 1 ) ) = ( Ack ` 4 ) : No typesetting found for |- ( Ack ` ( 3 + 1 ) ) = ( Ack ` 4 ) with typecode |-
11 10 fveq1i Could not format ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 4 ) ` 0 ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 4 ) ` 0 ) with typecode |-
12 ackval40 Could not format ( ( Ack ` 4 ) ` 0 ) = ; 1 3 : No typesetting found for |- ( ( Ack ` 4 ) ` 0 ) = ; 1 3 with typecode |-
13 11 12 eqtri Could not format ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ; 1 3 : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ; 1 3 with typecode |-
14 13 fveq2i Could not format ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( Ack ` 3 ) ` ; 1 3 ) : No typesetting found for |- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( Ack ` 3 ) ` ; 1 3 ) with typecode |-
15 1nn0 1 0
16 15 5 deccl 13 0
17 oveq1 n = 13 n + 3 = 13 + 3
18 17 oveq2d n = 13 2 n + 3 = 2 13 + 3
19 18 oveq1d n = 13 2 n + 3 3 = 2 13 + 3 3
20 eqid 13 = 13
21 3p3e6 3 + 3 = 6
22 15 5 5 20 21 decaddi 13 + 3 = 16
23 22 oveq2i 2 13 + 3 = 2 16
24 23 oveq1i 2 13 + 3 3 = 2 16 3
25 19 24 eqtrdi n = 13 2 n + 3 3 = 2 16 3
26 ackval3 Could not format ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) : No typesetting found for |- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-
27 ovex 2 16 3 V
28 25 26 27 fvmpt Could not format ( ; 1 3 e. NN0 -> ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) ) : No typesetting found for |- ( ; 1 3 e. NN0 -> ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) ) with typecode |-
29 16 28 ax-mp Could not format ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-
30 14 29 eqtri Could not format ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-
31 8 30 eqtri Could not format ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-
32 4 31 eqtri Could not format ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-