Metamath Proof Explorer


Theorem ackval41a

Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024)

Ref Expression
Assertion ackval41a Ack 4 1 = 2 16 3

Proof

Step Hyp Ref Expression
1 df-4 4 = 3 + 1
2 1 fveq2i Ack 4 = Ack 3 + 1
3 1e0p1 1 = 0 + 1
4 2 3 fveq12i Ack 4 1 = Ack 3 + 1 0 + 1
5 3nn0 3 0
6 0nn0 0 0
7 ackvalsucsucval 3 0 0 0 Ack 3 + 1 0 + 1 = Ack 3 Ack 3 + 1 0
8 5 6 7 mp2an Ack 3 + 1 0 + 1 = Ack 3 Ack 3 + 1 0
9 3p1e4 3 + 1 = 4
10 9 fveq2i Ack 3 + 1 = Ack 4
11 10 fveq1i Ack 3 + 1 0 = Ack 4 0
12 ackval40 Ack 4 0 = 13
13 11 12 eqtri Ack 3 + 1 0 = 13
14 13 fveq2i Ack 3 Ack 3 + 1 0 = Ack 3 13
15 1nn0 1 0
16 15 5 deccl 13 0
17 oveq1 n = 13 n + 3 = 13 + 3
18 17 oveq2d n = 13 2 n + 3 = 2 13 + 3
19 18 oveq1d n = 13 2 n + 3 3 = 2 13 + 3 3
20 eqid 13 = 13
21 3p3e6 3 + 3 = 6
22 15 5 5 20 21 decaddi 13 + 3 = 16
23 22 oveq2i 2 13 + 3 = 2 16
24 23 oveq1i 2 13 + 3 3 = 2 16 3
25 19 24 eqtrdi n = 13 2 n + 3 3 = 2 16 3
26 ackval3 Ack 3 = n 0 2 n + 3 3
27 ovex 2 16 3 V
28 25 26 27 fvmpt 13 0 Ack 3 13 = 2 16 3
29 16 28 ax-mp Ack 3 13 = 2 16 3
30 14 29 eqtri Ack 3 Ack 3 + 1 0 = 2 16 3
31 8 30 eqtri Ack 3 + 1 0 + 1 = 2 16 3
32 4 31 eqtri Ack 4 1 = 2 16 3