Metamath Proof Explorer


Theorem ackval50

Description: The Ackermann function at (5,0). (Contributed by AV, 9-May-2024)

Ref Expression
Assertion ackval50 Ack 5 0 = 65533

Proof

Step Hyp Ref Expression
1 df-5 5 = 4 + 1
2 1 fveq2i Ack 5 = Ack 4 + 1
3 2 fveq1i Ack 5 0 = Ack 4 + 1 0
4 4nn0 4 0
5 ackvalsuc0val 4 0 Ack 4 + 1 0 = Ack 4 1
6 4 5 ax-mp Ack 4 + 1 0 = Ack 4 1
7 ackval41 Ack 4 1 = 65533
8 3 6 7 3eqtri Ack 5 0 = 65533