Step |
Hyp |
Ref |
Expression |
1 |
|
brdomi |
|
2 |
|
neq0 |
|
3 |
|
simpl3 |
|
4 |
|
elmapi |
|
5 |
4
|
ad2antlr |
|
6 |
|
simpll1 |
|
7 |
|
f1f1orn |
|
8 |
|
f1ocnv |
|
9 |
|
f1of |
|
10 |
6 7 8 9
|
4syl |
|
11 |
10
|
ffvelrnda |
|
12 |
|
simpl2 |
|
13 |
12
|
ad2antrr |
|
14 |
11 13
|
ifclda |
|
15 |
5 14
|
ffvelrnd |
|
16 |
|
eldifsn |
|
17 |
|
elpwi |
|
18 |
17
|
anim1i |
|
19 |
16 18
|
sylbi |
|
20 |
15 19
|
syl |
|
21 |
20
|
ralrimiva |
|
22 |
|
acni2 |
|
23 |
3 21 22
|
syl2anc |
|
24 |
|
f1dm |
|
25 |
|
vex |
|
26 |
25
|
dmex |
|
27 |
24 26
|
eqeltrrdi |
|
28 |
27
|
3ad2ant1 |
|
29 |
28
|
ad2antrr |
|
30 |
|
simpll1 |
|
31 |
|
f1f |
|
32 |
|
frn |
|
33 |
|
ssralv |
|
34 |
30 31 32 33
|
4syl |
|
35 |
|
iftrue |
|
36 |
35
|
fveq2d |
|
37 |
36
|
eleq2d |
|
38 |
37
|
ralbiia |
|
39 |
34 38
|
syl6ib |
|
40 |
|
f1fn |
|
41 |
|
fveq2 |
|
42 |
|
2fveq3 |
|
43 |
41 42
|
eleq12d |
|
44 |
43
|
ralrn |
|
45 |
30 40 44
|
3syl |
|
46 |
39 45
|
sylibd |
|
47 |
30 7
|
syl |
|
48 |
|
f1ocnvfv1 |
|
49 |
47 48
|
sylan |
|
50 |
49
|
fveq2d |
|
51 |
50
|
eleq2d |
|
52 |
51
|
ralbidva |
|
53 |
46 52
|
sylibd |
|
54 |
53
|
impr |
|
55 |
|
acnlem |
|
56 |
29 54 55
|
syl2anc |
|
57 |
23 56
|
exlimddv |
|
58 |
57
|
ralrimiva |
|
59 |
|
elex |
|
60 |
|
isacn |
|
61 |
59 27 60
|
syl2anr |
|
62 |
61
|
3adant2 |
|
63 |
58 62
|
mpbird |
|
64 |
63
|
3exp |
|
65 |
64
|
exlimdv |
|
66 |
2 65
|
syl5bi |
|
67 |
|
acneq |
|
68 |
|
0fin |
|
69 |
|
finacn |
|
70 |
68 69
|
ax-mp |
|
71 |
67 70
|
eqtrdi |
|
72 |
71
|
eleq2d |
|
73 |
59 72
|
syl5ibr |
|
74 |
66 73
|
pm2.61d2 |
|
75 |
74
|
exlimiv |
|
76 |
1 75
|
syl |
|