| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdomi |
|
| 2 |
|
simplr |
|
| 3 |
|
imassrn |
|
| 4 |
|
simplll |
|
| 5 |
|
f1f |
|
| 6 |
|
frn |
|
| 7 |
4 5 6
|
3syl |
|
| 8 |
3 7
|
sstrid |
|
| 9 |
|
elmapi |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
ffvelcdmda |
|
| 12 |
11
|
eldifad |
|
| 13 |
12
|
elpwid |
|
| 14 |
|
f1dm |
|
| 15 |
4 14
|
syl |
|
| 16 |
13 15
|
sseqtrrd |
|
| 17 |
|
sseqin2 |
|
| 18 |
16 17
|
sylib |
|
| 19 |
|
eldifsni |
|
| 20 |
11 19
|
syl |
|
| 21 |
18 20
|
eqnetrd |
|
| 22 |
|
imadisj |
|
| 23 |
22
|
necon3bii |
|
| 24 |
21 23
|
sylibr |
|
| 25 |
8 24
|
jca |
|
| 26 |
25
|
ralrimiva |
|
| 27 |
|
acni2 |
|
| 28 |
2 26 27
|
syl2anc |
|
| 29 |
|
acnrcl |
|
| 30 |
29
|
ad3antlr |
|
| 31 |
|
simp-4l |
|
| 32 |
|
f1f1orn |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
simprr |
|
| 35 |
3 34
|
sselid |
|
| 36 |
|
f1ocnvfv2 |
|
| 37 |
33 35 36
|
syl2anc |
|
| 38 |
37 34
|
eqeltrd |
|
| 39 |
|
f1ocnv |
|
| 40 |
|
f1of |
|
| 41 |
33 39 40
|
3syl |
|
| 42 |
41 35
|
ffvelcdmd |
|
| 43 |
13
|
ad2ant2r |
|
| 44 |
|
f1elima |
|
| 45 |
31 42 43 44
|
syl3anc |
|
| 46 |
38 45
|
mpbid |
|
| 47 |
46
|
expr |
|
| 48 |
47
|
ralimdva |
|
| 49 |
48
|
impr |
|
| 50 |
|
acnlem |
|
| 51 |
30 49 50
|
syl2anc |
|
| 52 |
28 51
|
exlimddv |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
|
vex |
|
| 55 |
54
|
dmex |
|
| 56 |
14 55
|
eqeltrrdi |
|
| 57 |
|
isacn |
|
| 58 |
56 29 57
|
syl2an |
|
| 59 |
53 58
|
mpbird |
|
| 60 |
59
|
ex |
|
| 61 |
60
|
exlimiv |
|
| 62 |
1 61
|
syl |
|