Step |
Hyp |
Ref |
Expression |
1 |
|
brdomi |
|
2 |
|
simplr |
|
3 |
|
imassrn |
|
4 |
|
simplll |
|
5 |
|
f1f |
|
6 |
|
frn |
|
7 |
4 5 6
|
3syl |
|
8 |
3 7
|
sstrid |
|
9 |
|
elmapi |
|
10 |
9
|
adantl |
|
11 |
10
|
ffvelrnda |
|
12 |
11
|
eldifad |
|
13 |
12
|
elpwid |
|
14 |
|
f1dm |
|
15 |
4 14
|
syl |
|
16 |
13 15
|
sseqtrrd |
|
17 |
|
sseqin2 |
|
18 |
16 17
|
sylib |
|
19 |
|
eldifsni |
|
20 |
11 19
|
syl |
|
21 |
18 20
|
eqnetrd |
|
22 |
|
imadisj |
|
23 |
22
|
necon3bii |
|
24 |
21 23
|
sylibr |
|
25 |
8 24
|
jca |
|
26 |
25
|
ralrimiva |
|
27 |
|
acni2 |
|
28 |
2 26 27
|
syl2anc |
|
29 |
|
acnrcl |
|
30 |
29
|
ad3antlr |
|
31 |
|
simp-4l |
|
32 |
|
f1f1orn |
|
33 |
31 32
|
syl |
|
34 |
|
simprr |
|
35 |
3 34
|
sselid |
|
36 |
|
f1ocnvfv2 |
|
37 |
33 35 36
|
syl2anc |
|
38 |
37 34
|
eqeltrd |
|
39 |
|
f1ocnv |
|
40 |
|
f1of |
|
41 |
33 39 40
|
3syl |
|
42 |
41 35
|
ffvelrnd |
|
43 |
13
|
ad2ant2r |
|
44 |
|
f1elima |
|
45 |
31 42 43 44
|
syl3anc |
|
46 |
38 45
|
mpbid |
|
47 |
46
|
expr |
|
48 |
47
|
ralimdva |
|
49 |
48
|
impr |
|
50 |
|
acnlem |
|
51 |
30 49 50
|
syl2anc |
|
52 |
28 51
|
exlimddv |
|
53 |
52
|
ralrimiva |
|
54 |
|
vex |
|
55 |
54
|
dmex |
|
56 |
14 55
|
eqeltrrdi |
|
57 |
|
isacn |
|
58 |
56 29 57
|
syl2an |
|
59 |
53 58
|
mpbird |
|
60 |
59
|
ex |
|
61 |
60
|
exlimiv |
|
62 |
1 61
|
syl |
|