Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|
2 |
|
elpw2g |
|
3 |
2
|
anbi1d |
|
4 |
1 3
|
syl5bb |
|
5 |
4
|
ralbidv |
|
6 |
5
|
biimpar |
|
7 |
|
eqid |
|
8 |
7
|
fmpt |
|
9 |
6 8
|
sylib |
|
10 |
|
acni |
|
11 |
9 10
|
syldan |
|
12 |
|
nffvmpt1 |
|
13 |
12
|
nfel2 |
|
14 |
|
nfv |
|
15 |
|
fveq2 |
|
16 |
|
fveq2 |
|
17 |
15 16
|
eleq12d |
|
18 |
13 14 17
|
cbvralw |
|
19 |
|
simplr |
|
20 |
|
simplr |
|
21 |
|
simpll |
|
22 |
|
simpr |
|
23 |
21 22
|
ssexd |
|
24 |
7
|
fvmpt2 |
|
25 |
20 23 24
|
syl2anc |
|
26 |
25
|
eleq2d |
|
27 |
26
|
ex |
|
28 |
27
|
adantrd |
|
29 |
28
|
ralimdva |
|
30 |
29
|
imp |
|
31 |
|
ralbi |
|
32 |
30 31
|
syl |
|
33 |
32
|
biimpa |
|
34 |
|
ssel |
|
35 |
34
|
adantr |
|
36 |
35
|
ral2imi |
|
37 |
19 33 36
|
sylc |
|
38 |
|
fveq2 |
|
39 |
38
|
eleq1d |
|
40 |
39
|
rspccva |
|
41 |
37 40
|
sylan |
|
42 |
41
|
fmpttd |
|
43 |
|
simpll |
|
44 |
|
acnrcl |
|
45 |
43 44
|
syl |
|
46 |
|
fex2 |
|
47 |
42 45 43 46
|
syl3anc |
|
48 |
|
eqid |
|
49 |
|
fvex |
|
50 |
15 48 49
|
fvmpt |
|
51 |
50
|
eleq1d |
|
52 |
51
|
ralbiia |
|
53 |
33 52
|
sylibr |
|
54 |
42 53
|
jca |
|
55 |
|
feq1 |
|
56 |
|
fveq1 |
|
57 |
56
|
eleq1d |
|
58 |
57
|
ralbidv |
|
59 |
55 58
|
anbi12d |
|
60 |
47 54 59
|
spcedv |
|
61 |
60
|
ex |
|
62 |
18 61
|
syl5bi |
|
63 |
62
|
exlimdv |
|
64 |
11 63
|
mpd |
|