Metamath Proof Explorer


Theorem acni3

Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis acni3.1 y=gxφψ
Assertion acni3 XAC_AxAyXφgg:AXxAψ

Proof

Step Hyp Ref Expression
1 acni3.1 y=gxφψ
2 rabn0 yX|φyXφ
3 2 biimpri yXφyX|φ
4 ssrab2 yX|φX
5 3 4 jctil yXφyX|φXyX|φ
6 5 ralimi xAyXφxAyX|φXyX|φ
7 acni2 XAC_AxAyX|φXyX|φgg:AXxAgxyX|φ
8 6 7 sylan2 XAC_AxAyXφgg:AXxAgxyX|φ
9 1 elrab gxyX|φgxXψ
10 9 simprbi gxyX|φψ
11 10 ralimi xAgxyX|φxAψ
12 11 anim2i g:AXxAgxyX|φg:AXxAψ
13 12 eximi gg:AXxAgxyX|φgg:AXxAψ
14 8 13 syl XAC_AxAyXφgg:AXxAψ