Metamath Proof Explorer


Theorem acnnum

Description: A set X which has choice sequences on it of length ~P X is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acnnum X AC _ 𝒫 X X dom card

Proof

Step Hyp Ref Expression
1 pwexg X AC _ 𝒫 X 𝒫 X V
2 difss 𝒫 X 𝒫 X
3 ssdomg 𝒫 X V 𝒫 X 𝒫 X 𝒫 X 𝒫 X
4 1 2 3 mpisyl X AC _ 𝒫 X 𝒫 X 𝒫 X
5 acndom 𝒫 X 𝒫 X X AC _ 𝒫 X X AC _ 𝒫 X
6 4 5 mpcom X AC _ 𝒫 X X AC _ 𝒫 X
7 eldifsn x 𝒫 X x 𝒫 X x
8 elpwi x 𝒫 X x X
9 8 anim1i x 𝒫 X x x X x
10 7 9 sylbi x 𝒫 X x X x
11 10 rgen x 𝒫 X x X x
12 acni2 X AC _ 𝒫 X x 𝒫 X x X x f f : 𝒫 X X x 𝒫 X f x x
13 6 11 12 sylancl X AC _ 𝒫 X f f : 𝒫 X X x 𝒫 X f x x
14 simpr f : 𝒫 X X x 𝒫 X f x x x 𝒫 X f x x
15 7 imbi1i x 𝒫 X f x x x 𝒫 X x f x x
16 impexp x 𝒫 X x f x x x 𝒫 X x f x x
17 15 16 bitri x 𝒫 X f x x x 𝒫 X x f x x
18 17 ralbii2 x 𝒫 X f x x x 𝒫 X x f x x
19 14 18 sylib f : 𝒫 X X x 𝒫 X f x x x 𝒫 X x f x x
20 19 eximi f f : 𝒫 X X x 𝒫 X f x x f x 𝒫 X x f x x
21 13 20 syl X AC _ 𝒫 X f x 𝒫 X x f x x
22 dfac8a X AC _ 𝒫 X f x 𝒫 X x f x x X dom card
23 21 22 mpd X AC _ 𝒫 X X dom card
24 pwexg X dom card 𝒫 X V
25 numacn 𝒫 X V X dom card X AC _ 𝒫 X
26 24 25 mpcom X dom card X AC _ 𝒫 X
27 23 26 impbii X AC _ 𝒫 X X dom card