Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|
2 |
|
nnz |
|
3 |
2
|
3ad2ant1 |
|
4 |
|
zmulcl |
|
5 |
1 3 4
|
sylancr |
|
6 |
|
elfzelz |
|
7 |
6
|
3ad2ant2 |
|
8 |
|
congid |
|
9 |
5 7 8
|
syl2anc |
|
10 |
9
|
adantr |
|
11 |
|
oveq2 |
|
12 |
11
|
adantl |
|
13 |
10 12
|
breqtrd |
|
14 |
13
|
orcd |
|
15 |
|
elfzelz |
|
16 |
15
|
3ad2ant3 |
|
17 |
7 16
|
zsubcld |
|
18 |
17
|
zcnd |
|
19 |
18
|
abscld |
|
20 |
|
nnre |
|
21 |
20
|
3ad2ant1 |
|
22 |
|
0re |
|
23 |
|
resubcl |
|
24 |
21 22 23
|
sylancl |
|
25 |
|
2re |
|
26 |
|
remulcl |
|
27 |
25 21 26
|
sylancr |
|
28 |
|
simp2 |
|
29 |
|
simp3 |
|
30 |
24
|
leidd |
|
31 |
|
fzmaxdif |
|
32 |
3 28 3 29 30 31
|
syl221anc |
|
33 |
|
nnrp |
|
34 |
33
|
3ad2ant1 |
|
35 |
21 34
|
ltaddrpd |
|
36 |
21
|
recnd |
|
37 |
36
|
subid1d |
|
38 |
36
|
2timesd |
|
39 |
35 37 38
|
3brtr4d |
|
40 |
19 24 27 32 39
|
lelttrd |
|
41 |
40
|
adantr |
|
42 |
|
2nn |
|
43 |
|
simpl1 |
|
44 |
|
nnmulcl |
|
45 |
42 43 44
|
sylancr |
|
46 |
|
simpl2 |
|
47 |
46
|
elfzelzd |
|
48 |
|
simpl3 |
|
49 |
48
|
elfzelzd |
|
50 |
|
simpr |
|
51 |
|
congabseq |
|
52 |
45 47 49 50 51
|
syl31anc |
|
53 |
41 52
|
mpbid |
|
54 |
|
simpll2 |
|
55 |
|
elfzle1 |
|
56 |
54 55
|
syl |
|
57 |
7
|
zred |
|
58 |
16
|
zred |
|
59 |
58
|
renegcld |
|
60 |
57 59
|
resubcld |
|
61 |
60
|
recnd |
|
62 |
61
|
abscld |
|
63 |
62
|
ad2antrr |
|
64 |
|
1re |
|
65 |
|
resubcl |
|
66 |
21 64 65
|
sylancl |
|
67 |
66
|
renegcld |
|
68 |
21 67
|
resubcld |
|
69 |
68
|
ad2antrr |
|
70 |
27
|
ad2antrr |
|
71 |
7
|
ad2antrr |
|
72 |
71
|
zcnd |
|
73 |
16
|
znegcld |
|
74 |
73
|
ad2antrr |
|
75 |
74
|
zcnd |
|
76 |
72 75
|
abssubd |
|
77 |
|
0zd |
|
78 |
|
simpr |
|
79 |
|
0zd |
|
80 |
|
1z |
|
81 |
|
zsubcl |
|
82 |
3 80 81
|
sylancl |
|
83 |
|
fzneg |
|
84 |
16 79 82 83
|
syl3anc |
|
85 |
84
|
ad2antrr |
|
86 |
78 85
|
mpbid |
|
87 |
|
neg0 |
|
88 |
87
|
a1i |
|
89 |
88
|
oveq2d |
|
90 |
86 89
|
eleqtrd |
|
91 |
3
|
ad2antrr |
|
92 |
|
simp1 |
|
93 |
42 92 44
|
sylancr |
|
94 |
|
nnm1nn0 |
|
95 |
93 94
|
syl |
|
96 |
95
|
nn0ge0d |
|
97 |
|
0m0e0 |
|
98 |
97
|
a1i |
|
99 |
|
1cnd |
|
100 |
36 36 99
|
addsubassd |
|
101 |
38
|
oveq1d |
|
102 |
|
ax-1cn |
|
103 |
|
subcl |
|
104 |
36 102 103
|
sylancl |
|
105 |
36 104
|
subnegd |
|
106 |
100 101 105
|
3eqtr4rd |
|
107 |
96 98 106
|
3brtr4d |
|
108 |
107
|
ad2antrr |
|
109 |
|
fzmaxdif |
|
110 |
77 90 91 54 108 109
|
syl221anc |
|
111 |
76 110
|
eqbrtrd |
|
112 |
27
|
ltm1d |
|
113 |
106 112
|
eqbrtrd |
|
114 |
113
|
ad2antrr |
|
115 |
63 69 70 111 114
|
lelttrd |
|
116 |
93
|
ad2antrr |
|
117 |
|
simplr |
|
118 |
|
congabseq |
|
119 |
116 71 74 117 118
|
syl31anc |
|
120 |
115 119
|
mpbid |
|
121 |
56 120
|
breqtrd |
|
122 |
|
elfzelz |
|
123 |
122
|
zred |
|
124 |
123
|
adantl |
|
125 |
124
|
le0neg1d |
|
126 |
121 125
|
mpbird |
|
127 |
|
elfzle1 |
|
128 |
127
|
adantl |
|
129 |
|
letri3 |
|
130 |
124 22 129
|
sylancl |
|
131 |
126 128 130
|
mpbir2and |
|
132 |
131
|
negeqd |
|
133 |
132 88
|
eqtrd |
|
134 |
133 120 131
|
3eqtr4d |
|
135 |
|
oveq2 |
|
136 |
135
|
adantl |
|
137 |
136
|
fveq2d |
|
138 |
40
|
ad2antrr |
|
139 |
137 138
|
eqbrtrrd |
|
140 |
93
|
ad2antrr |
|
141 |
7
|
ad2antrr |
|
142 |
3
|
ad2antrr |
|
143 |
|
simplr |
|
144 |
7
|
zcnd |
|
145 |
36 36 144
|
ppncand |
|
146 |
36 144
|
addcomd |
|
147 |
145 146
|
eqtrd |
|
148 |
147
|
ad2antrr |
|
149 |
|
oveq2 |
|
150 |
149
|
adantl |
|
151 |
148 150
|
eqtr4d |
|
152 |
38
|
oveq1d |
|
153 |
152
|
ad2antrr |
|
154 |
16
|
zcnd |
|
155 |
144 154
|
subnegd |
|
156 |
155
|
ad2antrr |
|
157 |
151 153 156
|
3eqtr4d |
|
158 |
143 157
|
breqtrrd |
|
159 |
5
|
ad2antrr |
|
160 |
7 3
|
zsubcld |
|
161 |
160
|
ad2antrr |
|
162 |
|
dvdsadd |
|
163 |
159 161 162
|
syl2anc |
|
164 |
158 163
|
mpbird |
|
165 |
|
congabseq |
|
166 |
140 141 142 164 165
|
syl31anc |
|
167 |
139 166
|
mpbid |
|
168 |
|
simpr |
|
169 |
167 168
|
eqtr4d |
|
170 |
|
nnnn0 |
|
171 |
170
|
3ad2ant1 |
|
172 |
|
nn0uz |
|
173 |
171 172
|
eleqtrdi |
|
174 |
|
fzm1 |
|
175 |
174
|
biimpa |
|
176 |
173 29 175
|
syl2anc |
|
177 |
176
|
adantr |
|
178 |
134 169 177
|
mpjaodan |
|
179 |
53 178
|
jaodan |
|
180 |
14 179
|
impbida |
|