Metamath Proof Explorer


Theorem acongeq12d

Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014)

Ref Expression
Hypotheses acongeq12d.1 φ B = C
acongeq12d.2 φ D = E
Assertion acongeq12d φ A B D A B D A C E A C E

Proof

Step Hyp Ref Expression
1 acongeq12d.1 φ B = C
2 acongeq12d.2 φ D = E
3 1 2 oveq12d φ B D = C E
4 3 breq2d φ A B D A C E
5 2 negeqd φ D = E
6 1 5 oveq12d φ B D = C E
7 6 breq2d φ A B D A C E
8 4 7 orbi12d φ A B D A B D A C E A C E