Metamath Proof Explorer


Theorem acongneg2

Description: Negate right side of alternating congruence. Makes essential use of the "alternating" part. (Contributed by Stefan O'Rear, 3-Oct-2014)

Ref Expression
Assertion acongneg2 A B C A B C A B C A B C A B C

Proof

Step Hyp Ref Expression
1 zcn C C
2 1 3ad2ant3 A B C C
3 2 negnegd A B C C = C
4 3 oveq2d A B C B C = B C
5 4 breq2d A B C A B C A B C
6 5 biimpd A B C A B C A B C
7 6 orim2d A B C A B C A B C A B C A B C
8 7 imp A B C A B C A B C A B C A B C
9 8 orcomd A B C A B C A B C A B C A B C