Metamath Proof Explorer


Theorem acongsym

Description: Symmetry of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion acongsym A B C A B C A B C A C B A C B

Proof

Step Hyp Ref Expression
1 congsym A B C A B C A C B
2 1 exp32 A B C A B C A C B
3 2 3impia A B C A B C A C B
4 zcn B B
5 4 3ad2ant2 A B C B
6 5 negnegd A B C B = B
7 6 oveq1d A B C - B - C = B C
8 4 negcld B B
9 8 3ad2ant2 A B C B
10 zcn C C
11 10 3ad2ant3 A B C C
12 9 11 neg2subd A B C - B - C = C B
13 7 12 eqtr3d A B C B C = C B
14 13 breq2d A B C A B C A C B
15 14 biimpd A B C A B C A C B
16 3 15 orim12d A B C A B C A B C A C B A C B
17 16 imp A B C A B C A B C A C B A C B