Metamath Proof Explorer


Theorem acongtr

Description: Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion acongtr A B C D A B C A B C A C D A C D A B D A B D

Proof

Step Hyp Ref Expression
1 congtr A B C D A B C A C D A B D
2 1 3expa A B C D A B C A C D A B D
3 2 orcd A B C D A B C A C D A B D A B D
4 3 ex A B C D A B C A C D A B D A B D
5 simpll A B C D A B C A C D A B
6 znegcl C C
7 znegcl D D
8 6 7 anim12i C D C D
9 8 ad2antlr A B C D A B C A C D C D
10 simplll A B C D A C D A
11 simplrl A B C D A C D C
12 simplrr A B C D A C D D
13 simpr A B C D A C D A C D
14 congsym A C D A C D A D C
15 10 11 12 13 14 syl22anc A B C D A C D A D C
16 15 ex A B C D A C D A D C
17 zcn C C
18 17 adantr C D C
19 zcn D D
20 19 adantl C D D
21 18 20 neg2subd C D - C - D = D C
22 21 adantl A B C D - C - D = D C
23 22 eqcomd A B C D D C = - C - D
24 23 breq2d A B C D A D C A - C - D
25 16 24 sylibd A B C D A C D A - C - D
26 25 anim2d A B C D A B C A C D A B C A - C - D
27 26 imp A B C D A B C A C D A B C A - C - D
28 congtr A B C D A B C A - C - D A B D
29 5 9 27 28 syl3anc A B C D A B C A C D A B D
30 29 olcd A B C D A B C A C D A B D A B D
31 30 ex A B C D A B C A C D A B D A B D
32 simpll A B C D A B C A C D A B
33 7 anim2i C D C D
34 33 ad2antlr A B C D A B C A C D C D
35 simpr A B C D A B C A C D A B C A C D
36 congtr A B C D A B C A C D A B D
37 32 34 35 36 syl3anc A B C D A B C A C D A B D
38 37 olcd A B C D A B C A C D A B D A B D
39 38 ex A B C D A B C A C D A B D A B D
40 simpll A B C D A B C A C D A B
41 6 anim1i C D C D
42 41 ad2antlr A B C D A B C A C D C D
43 simpl A D A
44 simpr B C C
45 43 44 anim12i A D B C A C
46 45 an42s A B C D A C
47 46 adantr A B C D A C D A C
48 7 adantl C D D
49 48 ad2antlr A B C D A C D D
50 simpr A B C D A C D A C D
51 congsym A C D A C D A - D - C
52 47 49 50 51 syl12anc A B C D A C D A - D - C
53 52 ex A B C D A C D A - D - C
54 18 negnegd C D C = C
55 54 oveq2d C D - D - C = - D - C
56 zcn C C
57 56 adantr C D C
58 8 57 syl C D C
59 20 58 neg2subd C D - D - C = - C - D
60 55 59 eqtr3d C D - D - C = - C - D
61 60 adantl A B C D - D - C = - C - D
62 61 breq2d A B C D A - D - C A - C - D
63 53 62 sylibd A B C D A C D A - C - D
64 63 anim2d A B C D A B C A C D A B C A - C - D
65 64 imp A B C D A B C A C D A B C A - C - D
66 congtr A B C D A B C A - C - D A B D
67 40 42 65 66 syl3anc A B C D A B C A C D A B D
68 67 orcd A B C D A B C A C D A B D A B D
69 68 ex A B C D A B C A C D A B D A B D
70 4 31 39 69 ccased A B C D A B C A B C A C D A C D A B D A B D
71 70 3impia A B C D A B C A B C A C D A C D A B D A B D