Metamath Proof Explorer


Theorem acopy

Description: Angle construction. Theorem 11.15 of Schwabhauser p. 98. This is Hilbert's axiom III.4 for geometry. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses dfcgra2.p P = Base G
dfcgra2.i I = Itv G
dfcgra2.m - ˙ = dist G
dfcgra2.g φ G 𝒢 Tarski
dfcgra2.a φ A P
dfcgra2.b φ B P
dfcgra2.c φ C P
dfcgra2.d φ D P
dfcgra2.e φ E P
dfcgra2.f φ F P
acopy.l L = Line 𝒢 G
acopy.1 φ ¬ A B L C B = C
acopy.2 φ ¬ D E L F E = F
Assertion acopy φ f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEf ”⟩ f hp 𝒢 G D L E F

Proof

Step Hyp Ref Expression
1 dfcgra2.p P = Base G
2 dfcgra2.i I = Itv G
3 dfcgra2.m - ˙ = dist G
4 dfcgra2.g φ G 𝒢 Tarski
5 dfcgra2.a φ A P
6 dfcgra2.b φ B P
7 dfcgra2.c φ C P
8 dfcgra2.d φ D P
9 dfcgra2.e φ E P
10 dfcgra2.f φ F P
11 acopy.l L = Line 𝒢 G
12 acopy.1 φ ¬ A B L C B = C
13 acopy.2 φ ¬ D E L F E = F
14 eqid hl 𝒢 G = hl 𝒢 G
15 4 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A G 𝒢 Tarski
16 5 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A A P
17 6 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A B P
18 7 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A C P
19 simplr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A d P
20 9 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A E P
21 10 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A F P
22 12 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A ¬ A B L C B = C
23 8 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A D P
24 13 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A ¬ D E L F E = F
25 simprl φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A d hl 𝒢 G E D
26 1 2 14 19 23 20 15 11 25 hlln φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A d D L E
27 1 2 14 19 23 20 15 25 hlne1 φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A d E
28 1 2 11 15 23 20 21 19 24 26 27 ncolncol φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A ¬ d E L F E = F
29 simprr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A E - ˙ d = B - ˙ A
30 29 eqcomd φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A B - ˙ A = E - ˙ d
31 1 3 2 15 17 16 20 19 30 tgcgrcomlr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A A - ˙ B = d - ˙ E
32 1 3 2 11 14 15 16 17 18 19 20 21 22 28 31 trgcopy φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ f hp 𝒢 G d L E F
33 15 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ G 𝒢 Tarski
34 16 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ A P
35 17 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ B P
36 18 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ C P
37 19 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ d P
38 20 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ E P
39 simplr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ f P
40 1 2 11 4 5 6 7 12 ncolne1 φ A B
41 40 ad4antr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ A B
42 1 11 2 4 6 7 5 12 ncolrot1 φ ¬ B C L A C = A
43 1 2 11 4 6 7 5 42 ncolne1 φ B C
44 43 ad4antr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ B C
45 simpr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩
46 1 2 33 14 34 35 36 37 38 39 41 44 45 cgrcgra φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩
47 23 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ D P
48 25 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ d hl 𝒢 G E D
49 1 2 14 37 47 38 33 48 hlcomd φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ D hl 𝒢 G E d
50 1 2 14 33 34 35 36 37 38 39 46 47 49 cgrahl1 φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEf ”⟩
51 50 ex φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEf ”⟩
52 simpr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F f hp 𝒢 G d L E F
53 15 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F G 𝒢 Tarski
54 19 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F d P
55 20 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F E P
56 27 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F d E
57 1 2 11 4 8 9 10 13 ncolne1 φ D E
58 1 2 11 4 8 9 57 tgelrnln φ D L E ran L
59 58 ad4antr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F D L E ran L
60 26 ad2antrr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F d D L E
61 1 2 11 4 8 9 57 tglinerflx2 φ E D L E
62 61 ad4antr φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F E D L E
63 1 2 11 53 54 55 56 56 59 60 62 tglinethru φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F D L E = d L E
64 63 fveq2d φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F hp 𝒢 G D L E = hp 𝒢 G d L E
65 64 breqd φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F f hp 𝒢 G D L E F f hp 𝒢 G d L E F
66 52 65 mpbird φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F f hp 𝒢 G D L E F
67 66 ex φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P f hp 𝒢 G d L E F f hp 𝒢 G D L E F
68 51 67 anim12d φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ f hp 𝒢 G d L E F ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEf ”⟩ f hp 𝒢 G D L E F
69 68 reximdva φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ dEf ”⟩ f hp 𝒢 G d L E F f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEf ”⟩ f hp 𝒢 G D L E F
70 32 69 mpd φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEf ”⟩ f hp 𝒢 G D L E F
71 40 necomd φ B A
72 1 2 14 9 6 5 4 8 3 57 71 hlcgrex φ d P d hl 𝒢 G E D E - ˙ d = B - ˙ A
73 70 72 r19.29a φ f P ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEf ”⟩ f hp 𝒢 G D L E F