Metamath Proof Explorer


Theorem acoscos

Description: The arccosine function is an inverse to cos . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion acoscos A A 0 π arccos cos A = A

Proof

Step Hyp Ref Expression
1 coscl A cos A
2 1 adantr A A 0 π cos A
3 acosval cos A arccos cos A = π 2 arcsin cos A
4 2 3 syl A A 0 π arccos cos A = π 2 arcsin cos A
5 picn π
6 halfcl π π 2
7 5 6 ax-mp π 2
8 simpl A A 0 π A
9 nncan π 2 A π 2 π 2 A = A
10 7 8 9 sylancr A A 0 π π 2 π 2 A = A
11 10 fveq2d A A 0 π cos π 2 π 2 A = cos A
12 subcl π 2 A π 2 A
13 7 8 12 sylancr A A 0 π π 2 A
14 coshalfpim π 2 A cos π 2 π 2 A = sin π 2 A
15 13 14 syl A A 0 π cos π 2 π 2 A = sin π 2 A
16 11 15 eqtr3d A A 0 π cos A = sin π 2 A
17 16 fveq2d A A 0 π arcsin cos A = arcsin sin π 2 A
18 halfpire π 2
19 18 recni π 2
20 resub π 2 A π 2 A = π 2 A
21 19 8 20 sylancr A A 0 π π 2 A = π 2 A
22 rere π 2 π 2 = π 2
23 18 22 ax-mp π 2 = π 2
24 23 oveq1i π 2 A = π 2 A
25 21 24 eqtrdi A A 0 π π 2 A = π 2 A
26 recl A A
27 26 adantr A A 0 π A
28 resubcl π 2 A π 2 A
29 18 27 28 sylancr A A 0 π π 2 A
30 18 a1i A A 0 π π 2
31 neghalfpire π 2
32 31 a1i A A 0 π π 2
33 eliooord A 0 π 0 < A A < π
34 33 adantl A A 0 π 0 < A A < π
35 34 simprd A A 0 π A < π
36 19 19 subnegi π 2 π 2 = π 2 + π 2
37 pidiv2halves π 2 + π 2 = π
38 36 37 eqtri π 2 π 2 = π
39 35 38 breqtrrdi A A 0 π A < π 2 π 2
40 27 30 32 39 ltsub13d A A 0 π π 2 < π 2 A
41 34 simpld A A 0 π 0 < A
42 ltsubpos A π 2 0 < A π 2 A < π 2
43 27 18 42 sylancl A A 0 π 0 < A π 2 A < π 2
44 41 43 mpbid A A 0 π π 2 A < π 2
45 31 rexri π 2 *
46 18 rexri π 2 *
47 elioo2 π 2 * π 2 * π 2 A π 2 π 2 π 2 A π 2 < π 2 A π 2 A < π 2
48 45 46 47 mp2an π 2 A π 2 π 2 π 2 A π 2 < π 2 A π 2 A < π 2
49 29 40 44 48 syl3anbrc A A 0 π π 2 A π 2 π 2
50 25 49 eqeltrd A A 0 π π 2 A π 2 π 2
51 asinsin π 2 A π 2 A π 2 π 2 arcsin sin π 2 A = π 2 A
52 13 50 51 syl2anc A A 0 π arcsin sin π 2 A = π 2 A
53 17 52 eqtr2d A A 0 π π 2 A = arcsin cos A
54 asincl cos A arcsin cos A
55 2 54 syl A A 0 π arcsin cos A
56 subsub23 π 2 A arcsin cos A π 2 A = arcsin cos A π 2 arcsin cos A = A
57 19 8 55 56 mp3an2i A A 0 π π 2 A = arcsin cos A π 2 arcsin cos A = A
58 53 57 mpbid A A 0 π π 2 arcsin cos A = A
59 4 58 eqtrd A A 0 π arccos cos A = A