Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
acosf
Next ⟩
acoscl
Metamath Proof Explorer
Ascii
Unicode
Theorem
acosf
Description:
Domain and range of the arccos function.
(Contributed by
Mario Carneiro
, 31-Mar-2015)
Ref
Expression
Assertion
acosf
⊢
arccos
:
ℂ
⟶
ℂ
Proof
Step
Hyp
Ref
Expression
1
df-acos
⊢
arccos
=
x
∈
ℂ
⟼
π
2
−
arcsin
⁡
x
2
picn
⊢
π
∈
ℂ
3
halfcl
⊢
π
∈
ℂ
→
π
2
∈
ℂ
4
2
3
ax-mp
⊢
π
2
∈
ℂ
5
asincl
⊢
x
∈
ℂ
→
arcsin
⁡
x
∈
ℂ
6
subcl
⊢
π
2
∈
ℂ
∧
arcsin
⁡
x
∈
ℂ
→
π
2
−
arcsin
⁡
x
∈
ℂ
7
4
5
6
sylancr
⊢
x
∈
ℂ
→
π
2
−
arcsin
⁡
x
∈
ℂ
8
1
7
fmpti
⊢
arccos
:
ℂ
⟶
ℂ