Metamath Proof Explorer


Theorem acosrecl

Description: The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion acosrecl A 1 1 arccos A

Proof

Step Hyp Ref Expression
1 neg1rr 1
2 1re 1
3 iccssre 1 1 1 1
4 1 2 3 mp2an 1 1
5 4 sseli A 1 1 A
6 5 recnd A 1 1 A
7 acosval A arccos A = π 2 arcsin A
8 6 7 syl A 1 1 arccos A = π 2 arcsin A
9 halfpire π 2
10 asinrecl A 1 1 arcsin A
11 resubcl π 2 arcsin A π 2 arcsin A
12 9 10 11 sylancr A 1 1 π 2 arcsin A
13 8 12 eqeltrd A 1 1 arccos A