Metamath Proof Explorer


Theorem acsdomd

Description: In an algebraic closure system, if S and T have the same closure and S is infinite independent, then T dominates S . This follows from applying acsinfd and then applying unirnfdomd to the map given in acsmap2d . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsmap2d.1 φ A ACS X
acsmap2d.2 N = mrCls A
acsmap2d.3 I = mrInd A
acsmap2d.4 φ S I
acsmap2d.5 φ T X
acsmap2d.6 φ N S = N T
acsinfd.7 φ ¬ S Fin
Assertion acsdomd φ S T

Proof

Step Hyp Ref Expression
1 acsmap2d.1 φ A ACS X
2 acsmap2d.2 N = mrCls A
3 acsmap2d.3 I = mrInd A
4 acsmap2d.4 φ S I
5 acsmap2d.5 φ T X
6 acsmap2d.6 φ N S = N T
7 acsinfd.7 φ ¬ S Fin
8 1 2 3 4 5 6 acsmap2d φ f f : T 𝒫 S Fin S = ran f
9 simprr φ f : T 𝒫 S Fin S = ran f S = ran f
10 simprl φ f : T 𝒫 S Fin S = ran f f : T 𝒫 S Fin
11 inss2 𝒫 S Fin Fin
12 fss f : T 𝒫 S Fin 𝒫 S Fin Fin f : T Fin
13 10 11 12 sylancl φ f : T 𝒫 S Fin S = ran f f : T Fin
14 1 2 3 4 5 6 7 acsinfd φ ¬ T Fin
15 14 adantr φ f : T 𝒫 S Fin S = ran f ¬ T Fin
16 1 adantr φ f : T 𝒫 S Fin S = ran f A ACS X
17 16 elfvexd φ f : T 𝒫 S Fin S = ran f X V
18 5 adantr φ f : T 𝒫 S Fin S = ran f T X
19 17 18 ssexd φ f : T 𝒫 S Fin S = ran f T V
20 13 15 19 unirnfdomd φ f : T 𝒫 S Fin S = ran f ran f T
21 9 20 eqbrtrd φ f : T 𝒫 S Fin S = ran f S T
22 8 21 exlimddv φ S T