Metamath Proof Explorer


Theorem acsficl

Description: A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Hypothesis acsdrscl.f F = mrCls C
Assertion acsficl C ACS X S X F S = F 𝒫 S Fin

Proof

Step Hyp Ref Expression
1 acsdrscl.f F = mrCls C
2 fveq2 s = S F s = F S
3 pweq s = S 𝒫 s = 𝒫 S
4 3 ineq1d s = S 𝒫 s Fin = 𝒫 S Fin
5 4 imaeq2d s = S F 𝒫 s Fin = F 𝒫 S Fin
6 5 unieqd s = S F 𝒫 s Fin = F 𝒫 S Fin
7 2 6 eqeq12d s = S F s = F 𝒫 s Fin F S = F 𝒫 S Fin
8 isacs3lem C ACS X C Moore X s 𝒫 C toInc s Dirset s C
9 1 isacs4lem C Moore X s 𝒫 C toInc s Dirset s C C Moore X t 𝒫 𝒫 X toInc t Dirset F t = F t
10 1 isacs5lem C Moore X t 𝒫 𝒫 X toInc t Dirset F t = F t C Moore X s 𝒫 X F s = F 𝒫 s Fin
11 8 9 10 3syl C ACS X C Moore X s 𝒫 X F s = F 𝒫 s Fin
12 11 simprd C ACS X s 𝒫 X F s = F 𝒫 s Fin
13 12 adantr C ACS X S X s 𝒫 X F s = F 𝒫 s Fin
14 elfvdm C ACS X X dom ACS
15 elpw2g X dom ACS S 𝒫 X S X
16 14 15 syl C ACS X S 𝒫 X S X
17 16 biimpar C ACS X S X S 𝒫 X
18 7 13 17 rspcdva C ACS X S X F S = F 𝒫 S Fin