Metamath Proof Explorer


Theorem acsficl2d

Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl . Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsficld.1 φ A ACS X
acsficld.2 N = mrCls A
acsficld.3 φ S X
Assertion acsficl2d φ Y N S x 𝒫 S Fin Y N x

Proof

Step Hyp Ref Expression
1 acsficld.1 φ A ACS X
2 acsficld.2 N = mrCls A
3 acsficld.3 φ S X
4 1 2 3 acsficld φ N S = N 𝒫 S Fin
5 4 eleq2d φ Y N S Y N 𝒫 S Fin
6 1 acsmred φ A Moore X
7 funmpt Fun z 𝒫 X w A | z w
8 2 mrcfval A Moore X N = z 𝒫 X w A | z w
9 8 funeqd A Moore X Fun N Fun z 𝒫 X w A | z w
10 7 9 mpbiri A Moore X Fun N
11 eluniima Fun N Y N 𝒫 S Fin x 𝒫 S Fin Y N x
12 6 10 11 3syl φ Y N 𝒫 S Fin x 𝒫 S Fin Y N x
13 5 12 bitrd φ Y N S x 𝒫 S Fin Y N x