Database
BASIC ORDER THEORY
Lattices
Subset order structures
acsficld
Metamath Proof Explorer
Description: In an algebraic closure system, the closure of a set is the union of the
closures of its finite subsets. Deduction form of acsficl .
(Contributed by David Moews , 1-May-2017)
Ref
Expression
Hypotheses
acsficld.1
⊢ φ → A ∈ ACS ⁡ X
acsficld.2
⊢ N = mrCls ⁡ A
acsficld.3
⊢ φ → S ⊆ X
Assertion
acsficld
⊢ φ → N ⁡ S = ⋃ N 𝒫 S ∩ Fin
Proof
Step
Hyp
Ref
Expression
1
acsficld.1
⊢ φ → A ∈ ACS ⁡ X
2
acsficld.2
⊢ N = mrCls ⁡ A
3
acsficld.3
⊢ φ → S ⊆ X
4
2
acsficl
⊢ A ∈ ACS ⁡ X ∧ S ⊆ X → N ⁡ S = ⋃ N 𝒫 S ∩ Fin
5
1 3 4
syl2anc
⊢ φ → N ⁡ S = ⋃ N 𝒫 S ∩ Fin