Metamath Proof Explorer


Theorem acsfiel2

Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Hypothesis isacs2.f F = mrCls C
Assertion acsfiel2 C ACS X S X S C y 𝒫 S Fin F y S

Proof

Step Hyp Ref Expression
1 isacs2.f F = mrCls C
2 1 acsfiel C ACS X S C S X y 𝒫 S Fin F y S
3 2 baibd C ACS X S X S C y 𝒫 S Fin F y S