Step |
Hyp |
Ref |
Expression |
1 |
|
acsfiindd.1 |
|
2 |
|
acsfiindd.2 |
|
3 |
|
acsfiindd.3 |
|
4 |
|
acsfiindd.4 |
|
5 |
1
|
acsmred |
|
6 |
5
|
ad2antrr |
|
7 |
|
simplr |
|
8 |
|
simpr |
|
9 |
8
|
elin1d |
|
10 |
9
|
elpwid |
|
11 |
6 2 3 7 10
|
mrissmrid |
|
12 |
11
|
ralrimiva |
|
13 |
|
dfss3 |
|
14 |
12 13
|
sylibr |
|
15 |
5
|
adantr |
|
16 |
4
|
adantr |
|
17 |
|
simpr |
|
18 |
|
elfpw |
|
19 |
17 18
|
sylib |
|
20 |
19
|
simpld |
|
21 |
20
|
difss2d |
|
22 |
|
simplr |
|
23 |
22
|
snssd |
|
24 |
21 23
|
unssd |
|
25 |
19
|
simprd |
|
26 |
|
snfi |
|
27 |
|
unfi |
|
28 |
25 26 27
|
sylancl |
|
29 |
|
elfpw |
|
30 |
24 28 29
|
sylanbrc |
|
31 |
5
|
ad4antr |
|
32 |
|
simpr |
|
33 |
|
simpllr |
|
34 |
|
snidg |
|
35 |
|
elun2 |
|
36 |
33 34 35
|
3syl |
|
37 |
|
simpr |
|
38 |
36 37
|
eleqtrrd |
|
39 |
38
|
adantr |
|
40 |
2 3 31 32 39
|
ismri2dad |
|
41 |
5
|
ad3antrrr |
|
42 |
20
|
adantr |
|
43 |
|
neldifsnd |
|
44 |
42 43
|
ssneldd |
|
45 |
|
difsnb |
|
46 |
44 45
|
sylib |
|
47 |
|
ssun1 |
|
48 |
47 37
|
sseqtrrid |
|
49 |
48
|
ssdifd |
|
50 |
46 49
|
eqsstrrd |
|
51 |
24
|
adantr |
|
52 |
4
|
ad3antrrr |
|
53 |
51 52
|
sstrd |
|
54 |
37 53
|
eqsstrd |
|
55 |
54
|
ssdifssd |
|
56 |
41 2 50 55
|
mrcssd |
|
57 |
56
|
sseld |
|
58 |
57
|
adantr |
|
59 |
40 58
|
mtod |
|
60 |
59
|
ex |
|
61 |
30 60
|
rspcimdv |
|
62 |
13 61
|
syl5bi |
|
63 |
62
|
impancom |
|
64 |
63
|
ralrimiv |
|
65 |
4
|
ssdifssd |
|
66 |
1 2 65
|
acsficl2d |
|
67 |
66
|
notbid |
|
68 |
|
ralnex |
|
69 |
67 68
|
bitr4di |
|
70 |
69
|
ad2antrr |
|
71 |
64 70
|
mpbird |
|
72 |
71
|
an32s |
|
73 |
72
|
ralrimiva |
|
74 |
2 3 15 16 73
|
ismri2dd |
|
75 |
14 74
|
impbida |
|