Database
BASIC STRUCTURES
Moore spaces
Algebraic closure systems
acsfn0
Next ⟩
acsfn1
Metamath Proof Explorer
Ascii
Unicode
Theorem
acsfn0
Description:
Algebraicity of a point closure condition.
(Contributed by
Stefan O'Rear
, 3-Apr-2015)
Ref
Expression
Assertion
acsfn0
⊢
X
∈
V
∧
K
∈
X
→
a
∈
𝒫
X
|
K
∈
a
∈
ACS
⁡
X
Proof
Step
Hyp
Ref
Expression
1
0ss
⊢
∅
⊆
a
2
1
a1bi
⊢
K
∈
a
↔
∅
⊆
a
→
K
∈
a
3
2
rabbii
⊢
a
∈
𝒫
X
|
K
∈
a
=
a
∈
𝒫
X
|
∅
⊆
a
→
K
∈
a
4
0ss
⊢
∅
⊆
X
5
0fi
⊢
∅
∈
Fin
6
acsfn
⊢
X
∈
V
∧
K
∈
X
∧
∅
⊆
X
∧
∅
∈
Fin
→
a
∈
𝒫
X
|
∅
⊆
a
→
K
∈
a
∈
ACS
⁡
X
7
4
5
6
mpanr12
⊢
X
∈
V
∧
K
∈
X
→
a
∈
𝒫
X
|
∅
⊆
a
→
K
∈
a
∈
ACS
⁡
X
8
3
7
eqeltrid
⊢
X
∈
V
∧
K
∈
X
→
a
∈
𝒫
X
|
K
∈
a
∈
ACS
⁡
X