Metamath Proof Explorer


Theorem acsfn1c

Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion acsfn1c X V b K c X E X a 𝒫 X | b K c a E a ACS X

Proof

Step Hyp Ref Expression
1 riinrab 𝒫 X b K a 𝒫 X | c a E a = a 𝒫 X | b K c a E a
2 mreacs X V ACS X Moore 𝒫 X
3 acsfn1 X V c X E X a 𝒫 X | c a E a ACS X
4 3 ex X V c X E X a 𝒫 X | c a E a ACS X
5 4 ralimdv X V b K c X E X b K a 𝒫 X | c a E a ACS X
6 5 imp X V b K c X E X b K a 𝒫 X | c a E a ACS X
7 mreriincl ACS X Moore 𝒫 X b K a 𝒫 X | c a E a ACS X 𝒫 X b K a 𝒫 X | c a E a ACS X
8 2 6 7 syl2an2r X V b K c X E X 𝒫 X b K a 𝒫 X | c a E a ACS X
9 1 8 eqeltrrid X V b K c X E X a 𝒫 X | b K c a E a ACS X