Metamath Proof Explorer


Theorem acsinfd

Description: In an algebraic closure system, if S and T have the same closure and S is infinite independent, then T is infinite. This follows from applying unirnffid to the map given in acsmap2d . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsmap2d.1 φ A ACS X
acsmap2d.2 N = mrCls A
acsmap2d.3 I = mrInd A
acsmap2d.4 φ S I
acsmap2d.5 φ T X
acsmap2d.6 φ N S = N T
acsinfd.7 φ ¬ S Fin
Assertion acsinfd φ ¬ T Fin

Proof

Step Hyp Ref Expression
1 acsmap2d.1 φ A ACS X
2 acsmap2d.2 N = mrCls A
3 acsmap2d.3 I = mrInd A
4 acsmap2d.4 φ S I
5 acsmap2d.5 φ T X
6 acsmap2d.6 φ N S = N T
7 acsinfd.7 φ ¬ S Fin
8 1 2 3 4 5 6 acsmap2d φ f f : T 𝒫 S Fin S = ran f
9 simplrr φ f : T 𝒫 S Fin S = ran f T Fin S = ran f
10 simplrl φ f : T 𝒫 S Fin S = ran f T Fin f : T 𝒫 S Fin
11 inss2 𝒫 S Fin Fin
12 fss f : T 𝒫 S Fin 𝒫 S Fin Fin f : T Fin
13 10 11 12 sylancl φ f : T 𝒫 S Fin S = ran f T Fin f : T Fin
14 simpr φ f : T 𝒫 S Fin S = ran f T Fin T Fin
15 13 14 unirnffid φ f : T 𝒫 S Fin S = ran f T Fin ran f Fin
16 9 15 eqeltrd φ f : T 𝒫 S Fin S = ran f T Fin S Fin
17 7 ad2antrr φ f : T 𝒫 S Fin S = ran f T Fin ¬ S Fin
18 16 17 pm2.65da φ f : T 𝒫 S Fin S = ran f ¬ T Fin
19 8 18 exlimddv φ ¬ T Fin