Metamath Proof Explorer


Theorem acsinfdimd

Description: In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd twice with acsinfd . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsinfdimd.1 φ A ACS X
acsinfdimd.2 N = mrCls A
acsinfdimd.3 I = mrInd A
acsinfdimd.4 φ S I
acsinfdimd.5 φ T I
acsinfdimd.6 φ N S = N T
acsinfdimd.7 φ ¬ S Fin
Assertion acsinfdimd φ S T

Proof

Step Hyp Ref Expression
1 acsinfdimd.1 φ A ACS X
2 acsinfdimd.2 N = mrCls A
3 acsinfdimd.3 I = mrInd A
4 acsinfdimd.4 φ S I
5 acsinfdimd.5 φ T I
6 acsinfdimd.6 φ N S = N T
7 acsinfdimd.7 φ ¬ S Fin
8 1 acsmred φ A Moore X
9 3 8 5 mrissd φ T X
10 1 2 3 4 9 6 7 acsdomd φ S T
11 3 8 4 mrissd φ S X
12 6 eqcomd φ N T = N S
13 1 2 3 4 9 6 7 acsinfd φ ¬ T Fin
14 1 2 3 5 11 12 13 acsdomd φ T S
15 sbth S T T S S T
16 10 14 15 syl2anc φ S T