Metamath Proof Explorer


Theorem acsmap2d

Description: In an algebraic closure system, if S and T have the same closure and S is independent, then there is a map f from T into the set of finite subsets of S such that S equals the union of ran f . This is proven by taking the map f from acsmapd and observing that, since S and T have the same closure, the closure of U. ran f must contain S . Since S is independent, by mrissmrcd , U. ran f must equal S . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsmap2d.1 φ A ACS X
acsmap2d.2 N = mrCls A
acsmap2d.3 I = mrInd A
acsmap2d.4 φ S I
acsmap2d.5 φ T X
acsmap2d.6 φ N S = N T
Assertion acsmap2d φ f f : T 𝒫 S Fin S = ran f

Proof

Step Hyp Ref Expression
1 acsmap2d.1 φ A ACS X
2 acsmap2d.2 N = mrCls A
3 acsmap2d.3 I = mrInd A
4 acsmap2d.4 φ S I
5 acsmap2d.5 φ T X
6 acsmap2d.6 φ N S = N T
7 1 acsmred φ A Moore X
8 3 7 4 mrissd φ S X
9 7 2 5 mrcssidd φ T N T
10 9 6 sseqtrrd φ T N S
11 1 2 8 10 acsmapd φ f f : T 𝒫 S Fin T N ran f
12 simprl φ f : T 𝒫 S Fin T N ran f f : T 𝒫 S Fin
13 7 adantr φ f : T 𝒫 S Fin T N ran f A Moore X
14 4 adantr φ f : T 𝒫 S Fin T N ran f S I
15 3 13 14 mrissd φ f : T 𝒫 S Fin T N ran f S X
16 13 2 15 mrcssidd φ f : T 𝒫 S Fin T N ran f S N S
17 6 adantr φ f : T 𝒫 S Fin T N ran f N S = N T
18 simprr φ f : T 𝒫 S Fin T N ran f T N ran f
19 13 2 mrcssvd φ f : T 𝒫 S Fin T N ran f N ran f X
20 13 2 18 19 mrcssd φ f : T 𝒫 S Fin T N ran f N T N N ran f
21 frn f : T 𝒫 S Fin ran f 𝒫 S Fin
22 21 unissd f : T 𝒫 S Fin ran f 𝒫 S Fin
23 unifpw 𝒫 S Fin = S
24 22 23 sseqtrdi f : T 𝒫 S Fin ran f S
25 24 ad2antrl φ f : T 𝒫 S Fin T N ran f ran f S
26 25 15 sstrd φ f : T 𝒫 S Fin T N ran f ran f X
27 13 2 26 mrcidmd φ f : T 𝒫 S Fin T N ran f N N ran f = N ran f
28 20 27 sseqtrd φ f : T 𝒫 S Fin T N ran f N T N ran f
29 17 28 eqsstrd φ f : T 𝒫 S Fin T N ran f N S N ran f
30 16 29 sstrd φ f : T 𝒫 S Fin T N ran f S N ran f
31 13 2 3 30 25 14 mrissmrcd φ f : T 𝒫 S Fin T N ran f S = ran f
32 12 31 jca φ f : T 𝒫 S Fin T N ran f f : T 𝒫 S Fin S = ran f
33 32 ex φ f : T 𝒫 S Fin T N ran f f : T 𝒫 S Fin S = ran f
34 33 eximdv φ f f : T 𝒫 S Fin T N ran f f f : T 𝒫 S Fin S = ran f
35 11 34 mpd φ f f : T 𝒫 S Fin S = ran f