Step |
Hyp |
Ref |
Expression |
1 |
|
acsmapd.1 |
|
2 |
|
acsmapd.2 |
|
3 |
|
acsmapd.3 |
|
4 |
|
acsmapd.4 |
|
5 |
|
fvex |
|
6 |
5
|
ssex |
|
7 |
4 6
|
syl |
|
8 |
4
|
sseld |
|
9 |
1 2 3
|
acsficl2d |
|
10 |
8 9
|
sylibd |
|
11 |
10
|
ralrimiv |
|
12 |
|
fveq2 |
|
13 |
12
|
eleq2d |
|
14 |
13
|
ac6sg |
|
15 |
7 11 14
|
sylc |
|
16 |
|
simprl |
|
17 |
|
nfv |
|
18 |
|
nfv |
|
19 |
|
nfra1 |
|
20 |
18 19
|
nfan |
|
21 |
17 20
|
nfan |
|
22 |
1
|
ad2antrr |
|
23 |
22
|
acsmred |
|
24 |
|
simplrl |
|
25 |
24
|
ffnd |
|
26 |
|
fnfvelrn |
|
27 |
25 26
|
sylancom |
|
28 |
27
|
snssd |
|
29 |
28
|
unissd |
|
30 |
|
frn |
|
31 |
30
|
unissd |
|
32 |
|
unifpw |
|
33 |
31 32
|
sseqtrdi |
|
34 |
24 33
|
syl |
|
35 |
3
|
ad2antrr |
|
36 |
34 35
|
sstrd |
|
37 |
23 2 29 36
|
mrcssd |
|
38 |
|
simprr |
|
39 |
38
|
r19.21bi |
|
40 |
|
fvex |
|
41 |
40
|
unisn |
|
42 |
41
|
fveq2i |
|
43 |
39 42
|
eleqtrrdi |
|
44 |
37 43
|
sseldd |
|
45 |
44
|
ex |
|
46 |
21 45
|
alrimi |
|
47 |
|
dfss2 |
|
48 |
46 47
|
sylibr |
|
49 |
16 48
|
jca |
|
50 |
49
|
ex |
|
51 |
50
|
eximdv |
|
52 |
15 51
|
mpd |
|