Step |
Hyp |
Ref |
Expression |
1 |
|
actfunsn.1 |
|
2 |
|
actfunsn.2 |
|
3 |
|
actfunsn.3 |
|
4 |
|
actfunsn.4 |
|
5 |
|
actfunsn.5 |
|
6 |
|
uneq1 |
|
7 |
6
|
cbvmptv |
|
8 |
5 7
|
eqtri |
|
9 |
|
vex |
|
10 |
|
snex |
|
11 |
9 10
|
unex |
|
12 |
11
|
a1i |
|
13 |
|
vex |
|
14 |
13
|
resex |
|
15 |
14
|
a1i |
|
16 |
|
rspe |
|
17 |
8 11
|
elrnmpti |
|
18 |
16 17
|
sylibr |
|
19 |
18
|
adantll |
|
20 |
|
simpr |
|
21 |
20
|
reseq1d |
|
22 |
1
|
sselda |
|
23 |
|
elmapfn |
|
24 |
22 23
|
syl |
|
25 |
|
fnsng |
|
26 |
3 25
|
sylan |
|
27 |
26
|
adantr |
|
28 |
|
disjsn |
|
29 |
4 28
|
sylibr |
|
30 |
29
|
adantr |
|
31 |
30
|
adantr |
|
32 |
|
fnunres1 |
|
33 |
24 27 31 32
|
syl3anc |
|
34 |
33
|
adantr |
|
35 |
21 34
|
eqtr2d |
|
36 |
19 35
|
jca |
|
37 |
36
|
anasss |
|
38 |
|
simpr |
|
39 |
|
simpr |
|
40 |
39
|
reseq1d |
|
41 |
1
|
ad3antrrr |
|
42 |
|
simplr |
|
43 |
41 42
|
sseldd |
|
44 |
43 23
|
syl |
|
45 |
3
|
ad4antr |
|
46 |
|
simp-4r |
|
47 |
45 46 25
|
syl2anc |
|
48 |
29
|
ad4antr |
|
49 |
44 47 48 32
|
syl3anc |
|
50 |
49 42
|
eqeltrd |
|
51 |
40 50
|
eqeltrd |
|
52 |
|
simpr |
|
53 |
52 17
|
sylib |
|
54 |
51 53
|
r19.29a |
|
55 |
54
|
adantr |
|
56 |
38 55
|
eqeltrd |
|
57 |
38
|
uneq1d |
|
58 |
40 49
|
eqtrd |
|
59 |
58
|
uneq1d |
|
60 |
59 39
|
eqtr4d |
|
61 |
60 53
|
r19.29a |
|
62 |
61
|
adantr |
|
63 |
57 62
|
eqtr2d |
|
64 |
56 63
|
jca |
|
65 |
64
|
anasss |
|
66 |
37 65
|
impbida |
|
67 |
8 12 15 66
|
f1od |
|