Metamath Proof Explorer


Theorem ad2ant2r

Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006)

Ref Expression
Hypothesis ad2ant2.1 φψχ
Assertion ad2ant2r φθψτχ

Proof

Step Hyp Ref Expression
1 ad2ant2.1 φψχ
2 1 adantrr φψτχ
3 2 adantlr φθψτχ