Metamath Proof Explorer


Theorem ad3antlr

Description: Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017) (Proof shortened by Wolf Lammen, 5-Apr-2022)

Ref Expression
Hypothesis ad2ant.1 φ ψ
Assertion ad3antlr χ φ θ τ ψ

Proof

Step Hyp Ref Expression
1 ad2ant.1 φ ψ
2 1 adantl χ φ ψ
3 2 ad2antrr χ φ θ τ ψ