Metamath Proof Explorer


Theorem ad4ant124

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad4ant3.1 φ ψ χ θ
Assertion ad4ant124 φ ψ τ χ θ

Proof

Step Hyp Ref Expression
1 ad4ant3.1 φ ψ χ θ
2 1 3expa φ ψ χ θ
3 2 adantlr φ ψ τ χ θ