Metamath Proof Explorer


Theorem ad5ant125

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Hypothesis ad5ant.1 φ ψ χ θ
Assertion ad5ant125 φ ψ τ η χ θ

Proof

Step Hyp Ref Expression
1 ad5ant.1 φ ψ χ θ
2 1 3expia φ ψ χ θ
3 2 2a1d φ ψ τ η χ θ
4 3 imp41 φ ψ τ η χ θ