Metamath Proof Explorer


Theorem ad5ant25

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad5ant2.1 φ ψ χ
Assertion ad5ant25 θ φ τ η ψ χ

Proof

Step Hyp Ref Expression
1 ad5ant2.1 φ ψ χ
2 1 adantll θ φ ψ χ
3 2 ad4ant14 θ φ τ η ψ χ